Меню

Термоядерный синтез. Управляемый термоядерный синтез

Мебель

(УТС) - процесс слияния лёгких атомных ядер, проходящий с выделением энергии при высоких темп-pax в регулируемых управляемых условиях. УТС пока ещё не реализован. Для осуществления реакций синтеза реагирующие ядра должны быть сближены на расстояние порядка 10 -11 см, после чего процесс их слияния происходит с заметной вероятностью за счёт туннельного эффекта. Для преодоления потенц. барьера сталкивающимся лёгким ядрам должна быть сообщена ~10кэВ, что соответствует темп-ре ~ Ю 8 К. С увеличением заряда ядер (порядкового номера Z) их кулоновское отталкивание усиливается и величина необходимой для реакции энергии возрастает. Эфф. сечения (р, р)-реакций, обусловленных слабыми взаимодействиями, очень малы. Реакции между тяжёлыми изотопами водорода (дейтерием и тритием) обусловлены сильным взаимодействием и имеют на 22-23 порядка выше (см. Термоядерные реакции). Различия в величинах энерговыделения в реакциях синтеза не превышают одного порядка. При слиянии ядер дейтерия и трития оно составляет 17,6 МэВ. Большая этих реакций и относительно высокое энерговыделение делают равноком-понентную смесь дейтерия и трития наиб, перспективной для решения проблемы УТС. Тритий радиоактивен (период полураспада 12,5 лет), не встречается в природе. Следовательно, для обеспечения работы термоядерного реактора, использующего в качестве ядерного горючего , должна быть предусмотрена возможность его воспроизводства. С этой целью рабочая зона реактора может быть окружена слоем лёгкого изотопа лития, в к-ром будет идти реакция

Эфф. сечение термоядерных реакций быстро возрастает с темп-рой, но даже в оптим. условиях остаётся несравненно меньше эфф. сечения атомных столкновений. По этой причине реакции синтеза должны происходить в полностью ионизованной плазме, нагретой до высокой темп-ры, где ионизации и возбуждения атомов отсутствуют и дейтон-дейтонные или дейтон-тритонные столкновения рано или поздно завершаются ядерным синтезом.

Успешная работа и дальнейшее развитие любой из перечисленных систем возможны только при условии, что исходная структура оказывается макроскопически устойчивой, сохраняя заданную форму в течение всего времени, необходимого для протекания реакции. Кроме того, в плазме должны быть подавлены те микроскопич. неустойчивости, при возникновении и развитии к-рых частиц по энергиям перестаёт быть равновесным и потоки частиц и тепла поперёк силовых линий резко возрастают по сравнению с их теоретич. значением. Именно в направлении стабилизации плазменных неустойчивостей разного типа развивались осн. исследования магн. систем начиная с 1952, и эта работа ещё полностью не может считаться завершённой.

Сверхбыстродействующие системы УТС с инерциальным удержанием. Трудности, связанные с магн. удержанием плазмы, можно, в принципе, обойти, если "сжигать" термоядерное горючее за чрезвычайно малые времена, когда нагретое не успевает разлететься из зоны реакции. Согласно критерию Лоусона, реализация УТС при таком способе сжигания может быть достигнута лишь при очень высокой плотности рабочего вещества. Чтобы избежать ситуации термоядерного взрыва большой мощности, нужно использовать очень малые порции горючего: исходное термоядерное топливо должно иметь вид небольших крупинок (диам. неск. мм), приготовленных из смеси твёрдого дейтерия и трития, впрыскиваемых в реактор перед каждым его рабочим тактом. Гл. проблема заключается в быстром подведении необходимой энергии для разогрева крупинки горючего. Решение этой проблемы возлагается на применение лазерного излучения (см. Лазерный термоядерный синтез )или интенсивных сфокусированных пучков быстрых заряж. частиц. Исследования в области УТС с применением лазерного нагрева были начаты в 1964; использование пучков тяжёлых и лёгких ионов находится на ещё более ранней стадии изучения (см. Ионный термоядерный синтез).

Энергия W, к-рую необходимо подводить к крупинке горючего для обеспечения работы установки в реакторном режиме, как следует из простого расчёта, обратно пропорциональна квадрату плотности дейтерий-тритиевого топлива. Оценки показывают, что допустимые значения W получаются лишь в случае резкого, в 10 2 -10 3 раз, увеличения плотности термоядерного топлива по сравнению с исходной плотностью твёрдой (d, t)-мишени. Столь высокие степени сжатия, необходимые для получения столь больших плотностей, оказываются достижимыми при испарении поверхностных слоев симметрично облучаемой мишени и реактивном сжатии её внутр. зон. Для этого подводимая мощность должна быть определённым образом программирована во времени. Др. возможности состоят в программировании радиального распределения плотности вещества и в использовании сложных много-оболочечных мишеней. Необходимая энергия оценивается в ~10 6 -10 7 Дж, что лежит в пределах совр. возможностей лазерной техники. К цифрам такого же масштаба приводит анализ систем с ионными пучками.

Трудности и перспективы. Исследования в области УТС сталкиваются с большими трудностями как чисто физ, так и техн. характера. К первым относится уже упомянутая проблема устойчивости горячей плазмы, помещённой в магн. ловушку. Применение сильных магн. полей спец. конфигурации позволило подавить мн. виды макроскопич. неустойчивостей, но окончат. решение вопроса пока отсутствует.

В частности, для интересной и важной системы - токамак- остаётся т. н. проблема "большого срыва", при к-рой плазменный токовый шнур сначала стягивается к оси камеры, затем прерывается за неск. мс и на стенки камеры сбрасывается большая энергия. Кроме теплового удара камера испытывает при этом и механич. .

Серьёзную трудность представляет также образование пучков быстрых электронов, оторванных от осн. ансамбля электронов плазмы. Эти пучки приводят к сильному возрастанию потоков тепла и частиц поперёк поля. В сверхбыстродействующих системах также наблюдается образование группы быстрых электронов в плазменной короне, окружающей мишень. Эти электроны успевают преждевременно нагреть центральные зоны мишени, препятствуя достижению необходимой степени сжатия и последующего запрограммированного протекания ядерных реакций. Осн. трудность в этих системах-осуществление устойчивого сферически-симметричного сжатия мишеней.

Ещё одна трудность связана с проблемой примесей. Эл.-магн. при используемых значениях п и Т плазмы и возможных размерах реактора свободно покидает плазму, но для чисто водородной плазмы эти энергетич. потери, определяемые в осн. тормозным излучением электронов, в случае (d, 1)-реакций перекрываются ядерным энерговыделением уже при темп-pax выше 4-10 7 К. Однако даже малая добавка чужеродных атомов с большим Z, к-рые при рассматриваемых темп-pax находятся в сильно ионизованном состоянии, приводят к возрастанию энергетич. потерь выше допустимого уровня. Требуются чрезвычайные усилия (непрерывное совершенствование вакуумных установок, использование тугоплавких и труднораспыляемых веществ, таких, напр., как , вольфрам, в качестве материала диафрагм, применение устройств для улавливания атомов примесей и т. д.), чтобы содержание примесей в плазме оставалось ниже допустимого уровня (=<0,1%). Для инер-циальных систем-предотвращение перемешивания вещества сжимающей оболочки с термоядерным топливом на конечных стадиях сжатия.

На рис. 3 указаны параметры, достигнутые на разл. установках к 1994. Как видно, параметры этих систем близки к пороговым значениям. Мало того, на самом большом работающем токамаке JET (Зап. Европа) в ноябре 1991 был впервые осуществлён разрядный на (d, 1)-плазме длительностью ок. 2 с. При этом была получена энергия синтеза в управляемых условиях на уровне мощности ~ 1 МВт. Годом позже на установке TFTR была получена энергия ~6 МВт. Из экологич. соображений опыты проводились не на равнокомпонентной смеси дейтерия и трития, а с содержанием трития на уровне 10- 11%. В эксперименте на TFTR отношение энергии синтеза к затрач. энергии равнялось 0,15 (в пересчёте на равноком-понентную смесь ~0,46). Успех этих экспериментов отчётливо выдвинул на ведущее место среди установок, разрабатываемых по программе У ТС. В связи со сказанным понятно, что в международном проекте ИТЭР, к-рый предполагается осуществить к 2003 и к-рый должен служить эксперим. моделью будущей электростанции с реактором синтеза, предложено использование системы токамак.

Рис. 3. Параметры, достигнутые на различных установках для изучения проблемы управляемого термоядерного синтеза к 1991. Т-10-установка токамак Института атомной энергии имени И. В. Курчатова (СССР); PLT-установка токамак Принстонской лаборатории (США); Алкатор - установка токамак Массачусетсского технологического института (США); TFR - установка токамак в Фонтене-о-Роз (Франция); 2 ХПВ - открытая ловушка Ливерморской лаборатории (США); "Шива" (Ливерморская лаборатория, США); "Ливень" (ФИАН, Москва); стелларатор "Вендельштейн УП" (Гархинг, ФРГ).

Следует, однако, ясно понимать, что путь от работающего реактора до действующей электростанции ещё очень долог. Радиац. активация стенок камеры реактора при работе на топливе, содержащем тритий, исключительно велика. Даже если удастся осуществить стационарную работу реактора в -течение длит, времени, механич. стойкость первой стенки камеры в результате радиац. повреждений вряд ли сможет превышать (по оценкам экспертов) 5-6 лет. Это означает необходимость периодич. полного демонтажа установки и последующей новой сборки с помощью дистанционно действующих роботов, т. к. остаточная будет измеряться тысячами мегакюри. Глубокое подземное захоронение огромных по размерам деталей установки также окажется неизбежным.

Красивая возможность резкого сокращения радиоактивности работающей системы и остаточной наведённой активности может быть достигнута при работе на топливе с изотопом 3 Не по реакции Энерговьще-ление сохраняется на прежнем уровне, образование нейтронов будет происходить только за счёт побочных (d, d) реакций. К сожалению, необходимый изотоп 3 Не пришлось бы привозить с поверхности Луны, где он имеется в значит, концентрациях, тогда как на Земле его содержание ничтожно.

Если говорить о далёких прогнозах, то оптимум, вероятно, следует искать в сочетании солнечной энергетики и УТС. О возможностях, связанных с исключительно интересными, но ещё более отдалёнными перспективами применения процесса мюонного катализа для осуществления УТС, см. в ст. Мюоннът катализ.

Лит.: Арцимович Л. А., Управляемые , 2 изд., М., 1963; Furth Н. P., Tokamak research, "Nucl. Fus.", 1975, v. 15, № 3, p. 487; Лукьянове. Ю., Горячая плазма и управляемый ядерный синтез, М., 1975; Проблемы лазерного термоядерного синтеза. Сб. ст., М., 1976; Итоги науки и техники, сер. Физика плазмы, т. 1-3, М., 1980-82. С. Ю. Лукьянов.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "УПРАВЛЯЕМЫЙ ТЕРМОЯДЕРНЫЙ СИНТЕЗ" в других словарях:

    - (УТС), процесс слияния лёгких атомных ядер, проходящий с выделением энергии, при высоких темп рах в регулируемых, управляемых условиях. УТС пока ещё не реализован. Для осуществления реакций синтеза реагирующие ядра должны быть сближены на… … Физическая энциклопедия

    - (УТС), слияние легких атомных ядер (например, дейтерия и трития) с выделением энергии, происходящее при весьма высоких температурах (?108К) в управляемых условиях (в термоядерном реакторе). Возможность осуществления УТС теоретически рассчитана в… … Современная энциклопедия

    - (УТС) научная проблема осуществления синтеза легких ядер с целью производства энергии. Решение проблемы будет достигнуто в плазме при температуре Т 108К и выполнении Лоусона критерия (n? 1014 см 3.с, где n плотность высокотемпературной плазмы; ?… … Большой Энциклопедический словарь

    управляемый термоядерный синтез - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN controlled thermonuclear fusioncontrolled nuclear fusionCTF … Справочник технического переводчика

    Управляемый термоядерный синтез - (УТС), слияние легких атомных ядер (например, дейтерия и трития) с выделением энергии, происходящее при весьма высоких температурах (³108К) в управляемых условиях (в термоядерном реакторе). Возможность осуществления УТС теоретически рассчитана в… … Иллюстрированный энциклопедический словарь

    Солнце природный термоядерный реактор Управляемый термоядерный синтез (УТС) синтез более тяжёлых атомных ядер из более лёгких с целью получения энергии, который, в отличие от взрывного термоядерного синтеза (и … Википедия

    Процесс слияния лёгких атомных ядер, происходящий с выделением энергии при высоких температурах в регулируемых, управляемых условиях. Скорости протекания термоядерных реакций малы из за кулоновского отталкивания (см. Кулона закон)… … Большая советская энциклопедия

    Управляемый термоядерный синтез - контролируемое протекание синтеза легких ядер (ядер дейтерия, трития) в ядра гелия с целью производства энергии (неконтролируемый синтез осуществляется в водородной бомбе). Технического решения пока нет … Начала современного естествознания, Рожанский В.А.. Учебное пособие содержит изложение вопросов кинетики, динамики и равновесия плазмы, а также процессов переноса в ней. Данный курс отличается от большинства курсовлекций по физике плазмы тем,…


Инновационные проекты с использованием современных сверхпроводников в ближайшее время позволят осуществить управляемый термоядерный синтез - так утверждают некоторые оптимисты. Эксперты, однако, предсказывают, что практическое применение займет несколько десятилетий.

Почему так сложно?

Энергия термоядерного синтеза считается потенциальным источником Это чистая энергия атома. Но что же она собой представляет и почему ее так сложно добиться? Для начала следует разобраться с различием между классическим и термоядерным синтезом.

Деление атома состоит в том, что радиоактивные изотопы - уран или плутоний - расщепляются и превращаются в другие высокорадиоактивные изотопы, которые затем должны быть захоронены или переработаны.

Синтеза заключается в том, что два изотопа водорода - дейтерий и тритий - сливаются в единое целое, образуя неядовитый гелий и единственный нейтрон, не производя радиоактивных отходов.

Проблема контроля

Реакции, которые происходят на Солнце или в водородной бомбе, - это синтез термоядерный, и перед инженерами стоит грандиозная задача - как контролировать этот процесс на электростанции?

Это то, над чем ученые работают начиная с 1960-х годов. Очередной экспериментальный реактор термоядерного синтеза под названием Wendelstein 7-X начал работу в северном немецком городе Грайфсвальде. Пока еще он не предназначен для создания реакции - это просто особая конструкция, которая проходит испытания (стелларатор вместо токамака).

Высокоэнергетичная плазма

Все термоядерные установки обладают общей чертой - кольцеобразной формой. В ее основе лежит идея использования мощных электромагнитов для создания сильного электромагнитного поля, имеющего форму тора - надутой велосипедной камеры.

Это электромагнитное поле должно быть настолько плотным, что, когда оно нагревается в микроволновой печи до одного миллиона градусов по Цельсию, в самом центре кольца должна появиться плазма. Затем она зажигается, чтобы синтез термоядерный мог начаться.

Демонстрация возможностей

В Европе в настоящее время проводится два подобных эксперимента. Одним из них является Wendelstein 7-X, который недавно сгенерировал свою первую гелиевую плазму. Другой - ITER - огромная экспериментальная установка термоядерного синтеза на юге Франции, которая все еще находится в стадии строительства и будет готова к запуску в 2023 году.

Предполагается, что на ITER будут происходить настоящие ядерные реакции, правда, лишь в течение короткого периода времени и уж точно не дольше 60 минут. Этот реактор является лишь одним из многих шагов на пути к тому, чтобы на практике осуществить ядерный синтез.

Термоядерный реактор: меньше и мощнее

Недавно несколько конструкторов объявили о создании нового дизайна реактора. По словам группы студентов из Массачусетского технологического института, а также представителей компании - производителя вооружений «Локхид Мартин», термоядерный синтез можно осуществить в установках, которые гораздо мощнее и меньше, чем ITER, и они готовы сделать это в течение десяти лет.

Идея новой конструкции заключается в использовании в электромагнитах современных высокотемпературных сверхпроводников, которые проявляют свои свойства при охлаждении жидким азотом, а не обычных, для которых необходим Новая, более гибкая технология позволит полностью изменить конструкцию реактора.

Клаус Хеш, отвечающий за технологии в Технологическом институте Карлсруэ на юго-западе Германии, настроен скептически. Он поддерживает использование новых высокотемпературных сверхпроводников для новых конструкций реакторов. Но, по его словам, что-то разработать на компьютере с учетом законов физики недостаточно. Необходимо принять во внимание вызовы, которые возникают при воплощении идеи на практике.

Научная фантастика

По словам Хеша, модель студентов MIT показывает лишь возможность осуществления проекта. Но на самом деле в ней много научной фантастики. Проект предполагает, что серьезные технические проблемы термоядерного синтеза решены. Но современная наука не имеет ни малейшего представления о том, как их решить.

Одной из таких проблем является идея разборных катушек. Для того чтобы попасть внутрь кольца, удерживающего плазму, в модели MIT-дизайна электромагниты могут быть разобраны.

Это было бы очень полезно, потому что можно бы было иметь доступ к объектам во внутренней системе и заменять их. Но в действительности сверхпроводники выполнены из керамического материала. Сотни их должны быть переплетены изощренным способом, чтобы сформировать правильное магнитное поле. И здесь возникают более фундаментальные трудности: соединения между ними не так просты, как соединения медных кабелей. Никто еще даже не задумывался о концепциях, которые бы помогли решить подобные проблемы.

Слишком горячо

Высокая температура также представляет собой проблему. В сердцевине термоядерной плазмы температура достигнет около 150 миллионов градусов по Цельсию. Эта экстремальная жара остается на месте - прямо в центре ионизированного газа. Но даже вокруг нее все еще очень жарко - от 500 до 700 градусов в зоне реактора, являющейся внутренним слоем металлической трубы, в которой будет «воспроизводиться» тритий, необходимый для того, чтобы происходил ядерный синтез.

Имеет еще большую проблему - так называемый выпуск мощности. Это часть системы, в которую из процесса синтеза поступает использованное топливо, в основном гелий. Первые металлические компоненты, в которые попадает горячий газ, называются «дивертор». Он может нагреваться свыше 2000 °C.

Проблема дивертора

Чтобы установка могла выдерживать такие температуры, инженеры пытаются использовать металлический вольфрам, применяемый в старомодных лампах накаливания. Температура плавления вольфрама около 3000 градусов. Но есть и другие ограничения.

В ITER это можно сделать, потому что нагрев в ней происходит не постоянно. Предполагается, что реактор будет работать лишь 1-3 % времени. Но это не вариант для электростанции, которая должна работать в режиме 24/7. И, если кто-то утверждает, что способен построить меньший реактор с такой же мощностью, как ITER, можно уверенно сказать, что у него нет решения проблемы дивертора.

Электростанция через несколько десятилетий

Тем не менее ученые с оптимизмом смотрят на развитие термоядерных реакторов, правда, оно будет не таким быстрым, как предсказывают некоторые энтузиасты.

ITER должен показать, что управляемый термоядерный синтез на самом деле может произвести больше энергии, чем будет затрачено на нагрев плазмы. Следующим шагом будет строительство совершенно новой гибридной демонстрационной электростанции, которая бы на самом деле вырабатывала электроэнергию.

Инженеры уже сейчас работают над ее дизайном. Они должны будут извлечь уроки из ITER, запуск которой запланирован на 2023 г. Принимая во внимание время, необходимое для проектирования, планирования и строительства, кажется маловероятным, что первая термоядерная электростанция будет запущена намного раньше середины XXI века.

Холодный термоядерный синтез Росси

В 2014 году независимый тест реактора E-Cat пришел к выводу, что устройство в течение 32 дней в среднем производило 2800 Вт выходной мощности при потреблении 900 Вт. Это больше, чем способна выделить любая химическая реакция. Результат говорит либо о прорыве в термоядерном синтезе, либо об откровенном мошенничестве. Отчет разочаровал скептиков, которые сомневаются в том, была ли проверка действительно независимой и предполагают возможную фальсификацию результатов тестирования. Другие занялись выяснением «секретных ингредиентов», которые позволяют осуществить термоядерный синтез Росси, чтобы воспроизвести эту технологию.

Росси - мошенник?

Андреа импозантен. Он издает воззвания к миру на уникальном английском в разделе комментариев своего веб-сайта, претенциозно названного «Журнал ядерной физики». Но его предыдущие неудачные попытки включали итальянский проект превращения мусора в топливо и термоэлектрический генератор. Petroldragon, проект переработки отходов в источник энергии, не удался отчасти потому, что нелегальное захоронение отходов контролируется итальянской организованной преступностью, которая возбудила против него уголовное дело о нарушении правил обращения с отходами. Также он создал термоэлектрическое устройство для Инженерного корпуса сухопутных войск США, но во время тестирования гаджет произвел лишь часть заявленной мощности.

Многие не доверяют Росси, а главный редактор New Energy Times прямо назвал его уголовником, за плечами которого череда неудачных энергетических прожектов.

Независимая проверка

Росси заключил контракт с американской компанией Industrial Heat на проведение годичных секретных испытаний 1-МВт установки холодного термоядерного синтеза. Устройство представляло собой транспортировочный контейнер, упакованный десятками E-Cat. Эксперимент должен был контролироваться третьей стороной, которая бы могла подтвердить, что действительно имеет место генерация тепла. Росси утверждает, что провел большую часть прошлого года, практически живя в контейнере, и наблюдал за операциями в течение более 16 ч в сутки, чтобы доказать коммерческую жизнеспособность E-Cat.

Тест завершился в марте. Сторонники Росси с нетерпением ждали отчета наблюдателей, надеясь на оправдание своего героя. Но в итоге они получили судебный процесс.

Судебное разбирательство

В своем заявлении в суд Флориды Росси утверждает, что тест прошел успешно и независимый арбитр подтвердил, что реактор E-Cat производит в шесть раз больше энергии, чем потребляет. Он также утверждал, что компания Industrial Heat согласилась заплатить ему 100 млн долларов США - 11,5 млн авансом после 24-часового испытания (якобы за права лицензирования, чтобы компания могла продавать эту технологию в США) и еще 89 млн после успешного завершения расширенного испытания в течение 350 дней. Росси обвинял IH в проведении «мошеннической схемы», целью которой была кража его интеллектуальной собственности. Он также обвинил компанию в незаконном присвоении реакторов E-Cat, незаконном копировании инновационных технологий и продуктов, функциональных возможностей и конструкций и неправомерной попытке получить патент на его интеллектуальную собственность.

Золотая жила

В другом месте Росси утверждает, что на фоне одной из его демонстраций компания IH получила от инвесторов 50-60 млн долларов и еще 200 млн от Китая после воспроизведения с участием китайских должностных лиц высшего уровня. Если это правда, то на кону намного больше ста миллионов долларов. Industrial Heat отвергла эти претензии как безосновательные и собирается активно защищаться. Что еще более важно, она утверждает, что «в течение более трех лет работала над подтверждением результатов, которых якобы добился Росси со своей E-Cat-технологией, и все безуспешно».

IH не верит в работоспособность E-Cat, и журнал New Energy Times не видит причин, чтобы в этом сомневаться. В июне 2011 года представитель издания посещал Италию, взял интервью у Росси и заснял демонстрацию его E-Cat. Через сутки он сообщил о своих серьезных опасениях относительно способа измерения тепловой мощности. Через 6 дней журналист выложил свое видео на YouTube. Эксперты со всего мира присылали ему анализы, которые были опубликованы в июле. Стало ясно, что это был обман.

Экспериментальное подтверждение

Тем не менее ряду исследователей - Александру Пархомову из Российского университета дружбы народов и Проекту памяти Мартина Флейшмана (MFPM) - удалось воспроизвести холодный термоядерный синтез Росси. Отчет MFPM назывался «Конец углеродной эры близок». Причиной такого восхищения стало обнаружение которое невозможно объяснить иначе, как термоядерной реакцией. По мнению исследователей, у Росси есть именно то, о чем он говорит.

Жизнеспособный открытый рецепт холодного ядерного синтеза способен вызвать энергетическую «золотую лихорадку». Могут быть найдены альтернативные методы, которые позволят обойти патенты Росси и оставить его в стороне от многомиллиардного энергетического бизнеса.

Так что, возможно, Росси предпочел бы избежать этого подтверждения.

Рис. 25. Положение rp -процесса относительно линииβ стабильности.

Процесс, который временами связан с р -процессом, естьrp - процесс – быстрый процесс захвата протона. Этот процесс создаёт протонами обогащённые ядра с Z =7-26. Он включает серию (р,γ) иβ + - распадов, которые характерны для р-обогащённых ядер. Процесс стартует как «выпадение» из CNO цикла. Это - боковая цепь CNO-цикла, создающая р-обогащённые ядра, такие как21 Na

и 19 Ne. Эти ядра создают основу для дальнейшего захвата

нейтронов, приводя к пути нуклеосинтеза, показанному на Рис. 25 . rp -процесс создаёт малое число ядер сА <100. Процесс следует по пути, аналогичному r -процессу, но на протон-обогащённой стороне стабильности. В настоящее время источником протонов

для этого процесса являются некоторые двойные звёзды. Заметим, что этот процесс временами близок к линии β стабильности, приближаясь к протоновой линии, когда ядро становится тяжелее.

6. ПРОБЛЕМА СОЛНЕЧНОГО НЕЙТРИНО

Многие ядерные реакции, обеспечивающие звёзды энергией, сопровождаются эмиссией нейтрино. Ввиду малого сечения поглощения нейтрино веществом (σ 10-44 см2 ), они практически не поглощаются Солнцем и другими звёздами. (Эти потери нейтрино соответствуют потери 2% энергии Солнца). Поэтому нейтрино – окно внутрь звезды. В тоже время, малое сечение поглощения затрудняет регистрацию нейтрино, поскольку практически все нейтрино проходят планету Земля без поглощения.

Поэтому существует проблема солнечного нейтрино. Табл. 4. Предсказанные потоки солнечного нейтрино.

Источник

Поток (част/с/см2 )

5,94x1010

1,40x108

7,88x103

4,86x107

5,82x106

5,71x108

5,03x108

5,91x106

6.1 Ожидаемые источники солнечного нейтрино, энергии и потоки

В виду своей близости к нашей планете, Солнце – основной источник достигающего Земли нейтрино.

Солнце испускает 1,8х1038 нейтрино/сек, которые через 8 мин достигают поверхности Земли с плотностью потока 6,4х1010 нейтрино/с/см2 . Предсказания стандартной солнечной модели для потоков нейтрино на поверхности Земли для различных ядерных реакций представлены вТабл. 4, а для распределения энергий - наРис. 26 . Каждая ядерная реакция имеет

характеристическое распределение энергии.

Рис. 25. Предсказание потоков нейтрино от различных ядерных реакций на Солнце. Области энергий, в которых детекторы чувствительны к нейтрино, показаны наверху.

13N → 13C+ β ++ ν e 15O → 15N+ β ++ ν e 17F → 17O+ β ++ ν e

Источник, помеченный «рр », вТабл. 4 иРис. 26 отражает реакцию

p+p→ d+e+ +ν e (65)

и является основной реакцией, производящей одно нейтрино на каждое синтезированное ядро 4 Не. «рер » источником является реакция

p+p+e- → d+ν e , (66)

которая производит моноэнергетические нейтрино, тогда как «hep» означает реакцию: p+3 He→ 4 He+e+ +ν e (67)

Эта последняя реакция производит нейтрино наивысшей энергии с максимальной энергией 18,77 МэВ (из-за высокого значенияQ реакции). Интенсивность этого источника в 107 раз меньше рр-источника. «7 Ве» источник означает рр -цепь реакции распада электронным захватом

в котором заселено первое возбуждённое состояние 8 Ве (при 3,04 МэВ). Слабые источники «13 N», «15 O» и «17 F» означаютβ + распады, происходящие в CNO цикле:

6.2 Детектирование нейтрино

Как уже упоминалось, детектирование слабо взаимодействующих нейтрино затруднено ввиду низкого значения сечения взаимодействия. Для преодоления этого препятствия предложено два типа детекторов: радиохимические детекторы и детекторы Черенкова. Радиохимические детекторы регистрируют продукты вызванных нейтрино реакций, тогда как Черенковские детекторы наблюдают рассеяние нейтрино. Так, в пещере Южной Дакоты на 1500 м ниже поверхности земли помещён массивный радиохимический детектор, содержащий 100000 галлонов очищенной жидкости, С2 Сl4 . Очищенная жидкость весила 610 тонн (объём 10 железнодорожных цистерн). В детекторе происходит следующая реакция:

ν e +37 Cl→ 37 Ar+e-

Продукт реакции 37 Ar распадается электронным захватом с Т=35 дней. После очистки жидкость экспонируется солнечным нейтрино определённый период времени, образовавшийся37 Ar вымывается из детектора потоком газообразного гелия и поступает в пропорциональный счётчик, который детектирует 2,8 электроны Оже, образовавшиеся при электронном захвате. Детектируемая реакция имеет порог 0,813 МэВ, т.е. детектор чувствителен к8 В, hep, pep и7 Be (распад основного состояния) нейтрино. Здесь наиболее важным является регистрация8 В. Обычно 3 атома37 Аr образуются за неделю и их надо изолировать от 1010 атомов жидкости. Детектор помещён глубоко под землёй и защищён от космической радиации.

Другие детекторы основаны на реакции

ν e +71 Ga→ 71 Ge+e-

Эти детекторы имеют порог 0,232 МэВ и могут быть использованы для прямого детектирования доминирующих рр нейтрино Солнца. Галлий присутствует как раствор GaCl3 .71 Ge собирают, промывая детектор азотом и конвертируя Ge в GeH4 перед счётом. Эти детекторы используют 30-100 тонн галлия и потребляют значительную долю ежегодного производства галлия.

Черенковские детекторы работают на эффекте рассеяния нейтрино заряженными частицами. После столкновения с нейтрино, выбитый электрон испускает черенковское излучение, которое можно зарегистрировать сцинтилляционными детекторами. Первый из таких детекторов был помещён в шахту Камиока в Японии. Супер Камиока содержал 50000 тонн высокочистой воды. Детектируемая реакция в этом случае – реакция рассеяния ν +e- →ν +e- , а порог детектирования 8 МэВ, что позволяет регистрировать8 В нейтрино.

Рис. 27. Сравнение предсказаний стандартной солнечной модели и экспериментальных измерений.

Канадский SNO детектор был смонтирован в никелевой шахте на глубине 2 км и содержал 1000 тонн тяжёлой воды (D2 O). В дополнении к нейтриноэлектронному рассеянию, этот детектор способен использовать ядерные реакции на дейтерии:

ν e+d→ 2p+e- (72)ν +d→ n+p+ν (73)

Последняя реакция может быть использована для регистрации всех типов нейтрино, ν е ,ν μ иν τ , тогда как первая реакция чувствительна только к электронным нейтрино. Набор протекающих в детекторе реакций можно использовать для наблюдения осцилляций нейтрино. В последней реакции, испущенный нейтрон детектируется (n ,γ) реакцией, в которой γ лучи регистрируются сцинтилляционным детектором (Тяжёловодный детектор окружён 7000 тон обычной воды, чтобы предохранить детектор от нейтронов, связанных с радиоактивностью стен шахты). Канадский детектор потребовал разработки новых методов глубокой очистки воды, т.к. чистота воды требовала содержание урана или тория менее 10 атомов на 1015 молекул воды.

6.3 Проблема солнечного нейтрино

Проблема солнечного нейтрино возникла из того факта, что детекторы зарегистрировали только 1/3 от ожидавшегося по стандартной модели солнечного нейтрино, которая предполагает, что 98,5% энергии Солнца происходит из рр -цепочки и 1,5 из CNO цикла.

Рис. 28 . Энергетические спектры галактических космических лучей, GCR.

Такое расхождение указывает, что или модель Солнца неверна или есть фундаментальные ошибки в использованной ядерной физике.

Проблема солнечного нейтрино заключается в ошибочных идеях о фундаментальной структуре вещества, задаваемых стандартной моделью. Стандартная модель предсказывает, что три типа нейтрино не имеют массы и что, будучи созданными, они продолжают существовать в неизменном виде всё остальное время. Основная идея альтернативной модели – модели осцилляции нейтрино – состоит в утверждении, что пока нейтрино выходят из Солнца, они трансформируются из электронных в мюонные нейтрино и обратно. Эти осцилляции

возможны, если нейтрино имеют массу и эта масса у электронного и мюонного нейтрино различны. Эти осцилляции усиливаются нейтрон-электронными взаимодействиями в Солнце. Полагают, что

масса τнейтрино>масса μ нейтрино>масса электронного нейтрино. Верхний предел этих масс

Рис. 29 . Относительная (по кремнию) распространённость элементов в солнечной системе и в космических лучах.

Нейтринные осцилляции - превращения нейтрино (электронного, мюонного или таонного) в нейтрино другого сорта (поколения), или же в антинейтрино. Теория предсказывает наличие закона периодического изменения вероятности обнаружения частицы определённого сорта в зависимости от прошедшего с момента создания частицы собственного времени. Наличие нейтринных осцилляций важно для решения проблемы солнечных нейтрино. Предполагается, что такие превращения - следствие наличия у нейтрино массы покоя или (для случая превращений нейтрино↔антинейтрино) несохранения лептонного заряда при высоких энергиях. Стандартная модель в первоначальной версии не описывает массы нейтрино и их осцилляции, однако они могут быть включены в эту теорию с помощью сравнительно небольшой модификации - включении в общий лагранжиан массового члена и PMNS-матрицы смешивания нейтрино.

Прямое доказательство осцилляций нейтрино пришло из наблюдений черенковского свечения. SNO детектор нашёл одну треть ожидавшегося числа электронных нейтрино, приходящих из Солнца в согласии с предыдущими данными, полученными радиохимическими детекторами. Японский детектор, который чувствителен преимущественно к электронным нейтрино, но имеет

чувствительность и к другим типам нейтрино, нашёл половину от потока нейтрино, ожидавшегося из

После открытия деления ядер атомов был открыт обратный процесс: ядерный синтез - когда легкие ядра соединяются в более тяжелые.

Процессы ядерного синтеза идут на Солнце - четыре изотопа водорода (водород-1) соединяются в гелий-4 с освобождением колоссального количества энергии.

На Земле в реакции синтеза используются изотопы водорода: дейтерий (водород-2) и тритий (водород-3):

3 1 H + 2 1 H → 4 2 He + 1 0 n

Ядерный синтез, как и деление ядер, не стал исключением. Первое практическое применение эта реакция получила в водородной бомбе, последствия взрыва которой были описаны ранее.

Если ученые уже научились управлять цепной реакцией деления ядер, то управление высвобождающейся энергией ядерного синтеза пока что еще несбыточная мечта.

Практическое применение расщепления ядерной энергии на АЭС имеет существенный недостаток - это утилизация отработанных ядерных отходов. Они радиоактивны, - предоставляют опасность живым организмам, а их период полураспада достаточно велик - несколько тысяч лет (в период этого времени радиоактивные отходы будут представлять опасность).

Ядерный синтез не имеет вредных отходов - это одно из главных преимуществ его использования. Решение проблемы управлением ядерным синтезом позволит получить неиссякаемый источник энергии.

В результате практического решения этой проблемы была создана установка ТОКАМАК.

Слово "ТОКАМАК" - по разным версиям это или сокращение слов ТОроидальная, КАмера, МАгнитные Катушки, или Приспособленное к легкому произношению сокращение от Тороидальная Камера с Магнитным Полем, которые описывают основные элементы этой магнитной ловушки, изобретенной А.Д. Сахаровым в 1950 г. Схема ТОКАМАКа показана на рисунке:


Первый ТОКАМАК был построен в России в Институте Атомной Энергии им И.В. Курчатова в 1956 г.

Для успешной работы установки ТОКАМАК надо решить три задачи.

Задача 1. Температура. Процесс ядерного синтеза требует чрезвычайно высокой энергии активации. Изотопы водорода необходимо нагреть до температуры примерно 40 млн.К - это температура, превышающая температуру Солнца!

При такой температуре электроны "испаряются" - остается только положительно заряженная плазма - ядра атомов, разогретые до высокой температуры.

Ученые пытаются разогревать вещество до такой температуры при помощи магнитного поля и лазера, но, пока безуспешно.

Задача 2. Время. Чтобы началась реакция ядерного синтеза, заряженные ядра должны находиться на достаточно близком расстоянии друг от друга при Т=40 млн.К довольно длительное время - около одной секунды.

Задача 3. Плазма. Вы изобрели абсолютный растворитель? Замечательно! Но, позвольте спросить - а где вы его будете хранить?

Во время ядерного синтеза вещество находится в состоянии плазмы при очень высокой температуре. Но в таких условиях любое вещество будет находиться в газообразном состоянии. Так как же "хранить" плазму?

Поскольку у плазмы есть заряд, то для ее удержания можно использовать магнитное поле. Но, увы, пока создать надежную "магнитную колбу" ученым так и не удалось.

По самым оптимистическим прогнозам ученым понадобится 30-50 лет, чтобы создать работающий источник экологически чистого источника энергии - "надгробный камень" для нефтяных и газовых магнатов. Впрочем, не факт, что к тому времени человечество не израсходует свои запасы нефти и газа.

Невероятно оптимистический прогноз на недалекое будущее делает портал «Хорошие Новости России». Причём он касается не только нашей страны, а и в равной степени всего остального мира:

Революции бывают общественно-политические (социалистические, буржуазные, цветные), а бывают научно-технические (НТР). Энергетическая революция - это разновидность НТР.

Революция (лат. revolutio) - это переворот, превращение - радикальное, коренное, глубокое, качественное изменение, скачок в развитии.

Что же такое энергетическая революция, на пороге которой стоит наш мир?

Какой переворот в области энергетики нас ожидает? Какое качественное изменение? В чём будет заключаться скачок в развитии и за счет чего он произойдет?

Все современные виды энергетики обладают разными недостатками, большинство из которых заключается либо в высокой стоимости (установки, подключения, киловатта), либо в низкой доступности.

Каждый, кто сталкивался с подключением к энергосетям, знает, что проблем хватает и доступность оставляет желать лучшего. Да и стоимость тоже.

Газ - один из самых дешевых и экологически чистых видов топлива - проведен не везде. Тянуть газопровод в отдаленные населенные пункты очень накладно. Сжиженный газ - дорогой. Газовая котельная тоже стоит немало. Купить газовый баллон и подключить к плите нетрудно, однако отопление и обеспечение дома электроэнергией покупкой баллона не решается. Кроме этого, газ взрывоопасен.

Дизель, мазут - для использования в котельных (генераторах) получается еще дороже, чем газ. Для использования в личных (подсобных) хозяйствах можно поставить генератор, но электроэнергия на выходе получится довольно дорогой. И генератор тоже денег стоит.

Гидроэнергетика требует строительства ГЭС - это большие капитальные затраты. И эксплуатация тоже далеко не бесплатная. И не везде доступно. И побочные эффекты для экологии. В общем, далеко не идеально. Для малой генерации вообще не годится.

Атомная энергетика сопряжена с риском аварий (Чернобыль, Фукусима) и как бы нас не убеждали, что современные АЭС абсолютно надежны, но жить по соседству с атомным энергоблоком все равно не слишком уютно. Кроме этого, АЭС генерируют отработанное топливо, а оно радиоактивное, его нужно где-то складировать, желательно в безопасном месте, чтобы не возникло утечки. И строительство АЭС - это опять же высокие капитальные затраты. Малых АЭС не существует и не может быть, хотя бы из соображений безопасности.

Солнечная энергетика - дорогая и не везде эффективная исходя из числа солнечных дней в году. Для обеспечения энергией отдаленных поселков и отдельно стоящих домиков в солнечных регионах годится, однако там, где нужна большая мощность, да еще и солнечных дней мало - не подходит.

Ветрогенерация - постепенно развивается, размеры и мощность генераторов растут, стоимость энергии снижается, но назвать этот вид энергетики панацеей тоже нельзя. Не очень дешево и не очень стабильно. И не везде применимо.

Идеального источника энергии пока нет

Одни дорогие, другие не везде доступны, третьи опасны. И все очень ограничены по мощности, не позволяют произвольно наращивать потребление по мере необходимости - в АЭС нельзя воткнуть лишние ТВЭЛы сверх проектной мощности, газопровод нельзя расширить, на ГЭС нельзя добавить пару дополнительных турбин.

В общем, сплошные ограничения...

Яркий пример недостатков современной энергетики - история с Крымом, когда полуостров столкнулся с дефицитом энергии, который не удалось быстро восполнить. Генераторов не хватало, быстро построить газовую электростанцию не представлялось возможным, даже протянуть кабель через пролив - и то заняло существенное время.

И не только доступность энергии оставляет желать лучшего, но и стоимость тоже.

Энергия составляет значительную часть стоимости всех товаров и услуг, потому что на всех этапах производства и доставки используется энергия и топливо (энергоноситель).

Промышленное оборудование работает на электричестве, печи - на газе или опять же на электричестве, в стоимости ж/д транспортировки тоже заложена стоимость электричества. В стоимости услуг автотранспорта - стоимость топлива.

Счета за ЖКХ почти целиком состоят из стоимости энергии - свет, горячая вода, отопление - это все энергия. И даже стоимость холодной воды зависит от стоимости энергии, потому что воду качают электронасосы.

Стоимость цемента (которая составляет значительную часть стоимости жилья) тоже существенно зависит от стоимости электроэнергии и топлива. Стоимость алюминия (одного из основных современных материалов) почти полностью состоит из стоимости электроэнергии, потому что алюминий производится методом электролиза.

Доля энергии и топлива в стоимости различных товаров и услуг сильно варьируется, но почти везде она достаточно высока, если учесть затраты энергии на всех этапах производства, начиная от добычи, очистки и переработки сырья.

Поэтому и хочется, чтобы энергия была и дешевле и доступнее.

Хочется, чтобы масштабируемость была высокой - от киловатт до гигаватт, чтобы можно было и крупный город обеспечить дешевой энергией и малый поселок, и даже отдельно стоящий дом. И чтобы везде работало, независимо от количества солнечных дней в году, наличия ветра, реки, рельефа местности и других природных факторов. И чтобы топливо было доступным. И чтобы экологически чисто.

Но возможно ли это?

Существует ли такой источник энергии, чтобы отвечал всем перечисленным критериям (доступность, масштабируемость, низкая стоимость установки и эксплуатации, экологичность)?

Сегодня на рынке такого источника нет.

Все существующие источники энергии обладают теми или иными недостатками и ограничениями - либо сравнительно дешевая установка, но дорогая энергия, либо высокие капитальные затраты, либо экологические риски, либо иные ограничения.

В ближайшем будущем появится новый источник энергии

Источник, который будет обладать и высокой масштабируемостью (от киловатта до гигаватта), и возможностью повсеместной установки (от крупных городов и промышленных объектов до малых поселков и отдельных домов), и экологичностью, и низкой стоимостью получаемой энергии (в несколько раз или даже в несколько десятков раз дешевле всех существующих).

Энергия, которая будет доступнее в разы и десятки раз как по стоимости, так и по возможностям установки в любой местности - в горах, на крайнем севере, в отдаленных поселках, на островах и полуостровах.

Каждое предприятие сможет позволить себе установку собственной энергетической установки, выдающей более дешевую энергию, чем сегодня доступна в любой сети.

Для строительства поселка или нового жилмассива не нужно будет добиваться отведения мощности от существующих ГЭС, ТЭЦ или АЭС - можно будет установить собственный энергоблок.

Многократное снижение стоимости энергии приведет к изменению в ценообразовании на все товары и услуги, сделает доступными новые материалы и технологии, применять которые сегодня невыгодно из-за высоких энергозатрат.

Энергетическая революция повлечет за собой большие изменения во всех других сферах, возможно тоже революционные.

Вслед за энергетикой будет меняться структура экономики, а вслед за экономикой и общественно-политическое устройство.

Но что за новый источник энергии приведет к мировой энергетической революции и всем вытекающим из этого изменениям?

Откуда возьмутся дешевые киловатты, мегаватты и гигаватты в любом месте и количестве, да еще и с условием экологической чистоты?

Энергетика ядерного синтеза

Существующая сегодня атомная энергетика основана на реакциях деления тяжелых радиоактивных элементов (в действующих АЭС используются изотопы урана). Именно этим вызвана высокая сложность и стоимость атомных электростанций, тяжелые последствия аварий, а также проблемы с отработанным топливом.

Радиоактивное топливо сложно и дорого производить, использовать и утилизировать. Высокие издержки и риски влияют на стоимость получаемой энергии и не позволяют строить малые АЭС везде и всюду, передавая их в эксплуатацию неподготовленному и неподконтрольному персоналу.

Однако наряду с реакциями деления существуют реакции синтеза, которые дают значительно больший выход энергии и при этом на выходе не образуется радиоактивных изотопов, а значит не возникает проблем с отработанным топливом.

Продукты ядерного синтеза - это почти всегда стабильные изотопы, которые ничем не отличаются от тех, что существуют в природе. Существуют, конечно, реакции синтеза с выходом радиоактивных изотопов, но никто не заставляет осуществлять именно их.

Про перспективы энергетики ядерного синтеза говорили и писали давно и много.

Энергетическую революцию, связанную с освоением технологии ядерного синтеза ждали еще в конце прошлого века - ждали, но так и не дождались.

Примерно полвека назад начались попытки запустить ядерный синтез и обеспечить за счет этого весь мир чистой и практически неисчерпаемой энергией (1 грамм синтезируемого вещества дает больше энергии, чем 100 литров бензина при том, что топливом в реакциях синтеза потенциально может быть все, что угодно, в том числе обычная вода).

Однако попытки запустить реакции синтеза на практике натолкнулись на кулоновский барьер, преодолеть который оказалось очень непросто.

Кулоновский барьер - это сила отталкивания атомных ядер, которая препятствует их слиянию (синтезу). Именно из-за кулоновского барьера ядерный синтез не идет кругом и всюду сам собой. Не будь этого барьера - все вещество давно бы превратилось в железо и ряд других тяжелых элементов.

Из-за того же кулоновского барьера термоядерный взрыв не может вызвать цепную реакцию, в ходе которой сгорела бы вся планета. При термоядерном взрыве ядерный синтез идет только в том объеме вещества, которое удалось "поджечь" в момент взрыва первой ступени, которой служит обычный ядерный заряд деления.

На протяжении полувека, с момента появления идей об использовании реакций ядерного синтеза в народном хозяйстве, попытки создать энергетику синтеза стабильно разбивались об этот самый кулоновский барьер.

Строились (и продолжают строиться) токамаки (разновидность реакторов синтеза) один больше другого, однако положительного выхода энергии, который превышал бы затраты на разогрев и удержание высокотемпературной плазмы внутри магнитного бублика (тора, отсюда и название - токамак, тороидальная магнитная катушка) - как не было, так и нет. И есть основания полагать, что никогда не будет.

Но если все попытки запустить энергетически эффективный ядерный синтез до сих пор разбивались о кулоновский барьер, если токамаки до сих пор не дали положительный выход энергии и неизвестно, дадут ли его когда-либо - откуда прогноз о скорой энергетической революции?

LENR или НЭЯР - низкоэнергетический ядерный синтез

Наряду с попытками строительства токамаков и запуска ядерного синтеза в высокотемпературной плазме существует направление, которое часто называют холодным синтезом, хотя это не совсем правильный термин, который многих вводит в заблуждение.

Суть в том, что ядерный синтез может идти не только в высокотемпературной плазме, но и при других условиях, в частности при мощном электрическом разряде, в котором ядра атомов приобретают достаточную для синтеза энергию (поэтому называть этот синтез холодным некорректно, сообщаемая частицам энергия в данном случае не меньше, чем в высокотемпературной плазме). Были обнаружены и другие условия, при которых идет «теплый» ядерный синтез - при температурах «ниже плазменной, но выше комнатной».

Долгое время академическая наука не признавала саму возможность ядерного синтеза в каких-либо иных условиях, чем высокотемпературная плазма. Исключение делалось для «мезонного катализа», при котором синтез не требовал разогрева вещества, однако не был энергетически выгоден, потому что затраты на получение мезонов выше, чем выход энергии синтеза.

Ряд ученых, которые вели исследования в области низкоэнергетического синтеза (LENR), подверглись резкой критике со стороны академического сообщества, объявлялись «алхимиками» и некоторые даже оказались уволены из своих институтов « за ересь» .

Но сколько ни утверждали «ортодоксы от физики», что ядерный синтез не может идти при низких энергиях, потому что не может и баста - исследования в этой области продолжались, к ним присоединялись новые научные центры, увеличивалось финансирование, экспериментальная база росла и... в конце концов выяснилось, что невозможное все-таки возможно и ядерный синтез идет не только в высокотемпературной плазме, но и при других условиях и состояниях вещества.

За последние годы ряд экспериментов по осуществлению «теплого» синтеза и синтеза в электрических разрядах удалось повторить разным независимым исследовательским группам, добиться устойчивого воспроизводимого эффекта и, что самое главное - получить положительный выход энергии, который оказался больше, чем при реакциях деления урана (как собственно и должно быть, потому что реакции синтеза энергетически мощнее реакций деления).

Кроме этого, было разработано сразу несколько теорий, объясняющих, как именно ядрам атомов удается преодолеть упрямый кулоновский барьер и почему это происходит при строго определенных условиях.

Единого мнения в научном сообществе, какая из теорий верна, пока еще нет. Остаются и те, кто продолжает упрямо повторять «этого не может быть, потому что не может быть никогда». Но признание фактов неизбежно, равно как и доводка теоретической базы до единого признанного научным сообществом состояния.

Кулоновский барьер оказался преодолен

Кулоновский барьер преодолен во всех смыслах и теперь появление ядерных реакторов, работающих на принципах синтеза - преимущественно инженерная задача и вопрос времени.

Конечно, до появления промышленных реакторов ядерного синтеза может пройти еще много лет. Может быть даже несколько десятилетий. Путь от экспериментальной установки до промышленного образца не всегда бывает простым. И наука должна прийти к единому мнению по физическим основам данных реакций, без этого процесс внедрения будет сильно буксовать.

В качестве примера можно вспомнить историю вертолетостроения. Первые экспериментальные вертолеты появились еще в начале 20-го века, но они были опасны, нестабильны и неэффективны. Только спустя несколько десятилетий, после Второй мировой, удалось разработать надежные и по-настоящему эффективные вертолеты, поставить их выпуск на поток и превратить из экспериментальных образцов в промышленные.

Вероятно такой же путь пройдут и реакторы ядерного синтеза - от экспериментальных установок, действующих сегодня, до промышленного оборудования, которое начнет выпускаться через 10-20 лет.

Но самое главное уже случилось - экспериментальные образцы реакторов синтеза созданы, исследователи добились устойчивого воспроизводимого эффекта и положительного выхода энергии, превышающего выход энергии от ТВЭЛов, используемых в современных АЭС.

Опытные образцы позволяют сделать вывод, что реакторы синтеза будут очень масштабируемыми - минимальная эффективная мощность будет начинаться с нескольких киловатт, а энергоблок этой мощности может быть размером с системный блок компьютера. Стоимость установки в расчете на киловатт мощности будет ниже, чем у любых существующих генераторов. Стоимость топлива (заряда) будет и вовсе ничтожно мала ввиду использования повсеместно распространенного вещества.

Перечислять исследователей и опытные установки, на которых получен эффект ядерного синтеза, в данном материале не буду, потому что они заслуживают отдельного обзора, который подготовлю и выложу дополнительно.

Пока укажу лишь страны, в которых проводились исследования и были получены положительные результаты - это Россия, Япония, Италия и США. При этом первая установка ядерного синтеза, судя по всему, была создана еще в СССР, однако проект не получил своевременного развития и был закрыт.

Особенно важно, что эффект ядерного синтеза удалось воспроизвести ученым из Китая, а если в Китае что-то удалось воспроизвести, то появление промышленных образцов уже точно не остановить.

Энергетика ядерного синтеза из фантастики превращается в реальность.

Мир стоит на пороге энергетической революции, которую уже не отменить.

Не отменить и все другие революции, которые последуют за энергетической, потому что энергия лежит в основе всего - производства, транспорта, жизнеобеспечения, в основе всей экономики. А экономика лежит в основе политики и общественного устройства. Поэтому вслед за энергетической революцией последуют и все остальные, вплоть до общественно-политических.