Меню

Тороидальная камера с магнитными катушками рисунок. Что такое «токамак»? Термоядерный реактор откроет человечеству новую эру

Гидроизоляция

Дата изобретения: 1933 г.

Краткая информация:

Теплофикационная турбина - паровая турбина, предназначенная для одновременного получения электроэнергии от приводимого ею генератора и тепловой энергии в виде пара, полностью или частично отработавшего в ней.

Дата изобретения: 1940 г.

Краткая информация:

Танк Т-34-85 был поставлен на производство зимой 1943-1944 гг. Он вооружался 85-мм пушкой, установленной в литой башне, первоначально разрабатывавшейся для тяжелого танка КВ-85. База танка почти не изменилась по сравнению с Т-34-76. Увеличенная башня вмещала трех членов экипажа, так что командир наконец был освобожден от посторонних функций и мог полностью сосредоточиться на своих основных обязанностях по руководству действиями экипажа.

Дата изобретения: 1928 г.

Краткая информация:

Основные научные достижения Н.Н. Семенова базируются на стыке двух наук — физики и химии. Однако со второй половины 1920-х гг. XX в. основное место в его деятельности занимали исследования в области цепных реакций. Реакции такого типа протекают весьма своеобразно. В начале реакции образуется небольшое количество активных атомов (свободных радикалов). Взаимодействуя с молекулами исходного вещества, они вызывают цепочку повторяющихся реакций. Иногда общее число реакций достигает 1 млн.

Описание:

Токамак (ТОроидальная КАмера с МАгнитными Катушками) - тороидальная установка для магнитного удержания плазмы. Плазма удерживается не стенками камеры, которые не способны выдержать её температуру, а специально создаваемым магнитным полем. Особенностью токамака является использование электрического тока, протекающего через плазму для создания полоидального поля, необходимого для равновесия плазмы. Этим он отличается от стелларатора, в котором и тороидальное и полоидальное поле создается с помощью магнитных катушек.

Термин «токамак» был введён русскими физиками Игорем Евгеньевичем Таммом и Андреем Дмитриевичем Сахаровым в 50х годах как сокращение фразы «тороидальная камера с магнитными катушками». Первый токамак был разработан под руководством академика Л. А. Арцимовича в Институте атомной энергии им. И. В. Курчатова в Москве и продемонстрирован в 1968 в Новосибирске. В настоящее время токамак считается наиболее перспективным устhойством для осуществления управляемого термоядерного синтеза.

Токамак представляет собой тороидальную вакуумную камеру, на которую намотаны катушки для создания (тороидального) магнитного поля. Из ваку-умной камеры сначала откачивают воздух, а затем заполняют её смесью дейтерия и трития. Затем, с помощью индуктора, в камере создают вихревое электрическое поле. Индуктор представляет собой первичную обмотку большого трансформатора, в котором камера токамака является вторичной обмоткой. Электрическое поле вызывает протекание тока и зажигание в камере плазмы. Протекающий через плазму ток выполняет две задачи: Нагревает плаз-му так же, как нагревал бы любой другой проводник (омический нагрев); Создает вокруг себя магнитное поле. Это магнитное поле называется полоидальным (т. е. направленное вдоль линий, проходящих через полюсы сферической системы координат).

Магнитное поле сжимает протекающий через плазму ток. В результате образуется конфигурация, в которой винтовые магнитные силовые линии «обвивают» плазменный шнур. При этом шаг при вращении в тороидальном направлении не совпадает с шагом в полоидальном направлении. Магнитные линии оказываются незамкнутыми, они бесконечно много раз закручиваются вокруг тора, образуя т. н. «магнитные поверхности» тороидальной формы. Наличие полоидального поля необходимо для стабильного удержания плазмы в такой системе. Так как оно создается за счет увеличения тока в индукторе, а он не может быть бесконечным, время стабильного существования плазмы в классическом токамаке ограничено. Для преодоления этого ограничения разработаны дополнительные способы поддержания тока. Для этого может быть использована инжекция в плазму ускоренных нейтральных атомов дейтерия или трития или микроволновое излучение.

Кроме тороидальных катушек для управления плазменным шнуром необходимы дополнительные катушки полоидального поля. Они представляют собой кольцевые витки, вокруг вертикальной оси камеры токамака. Одного только нагрева за счет протекания тока недостаточно для нагрева плазмы до температуры, необходимой для осуществления термоядерной реакции. Для дополнительного нагрева используется микроволновое излучение на т. н. резонансных частотах (например, совпадающих с циклотронной частотой либо электронов, либо ионов) или инжекция быстрых нейтральных атомов. Одной из важных проблем токамака является обеспечение чистоты плазмы, так как попадающие в плазму примеси прекращают реакцию. Попадают они в плазму со стенок камеры, так как запускаемые в объем рабочие вещества можно очистить, а стенка камеры работает в таких условиях, что проблема - из чего и как ее сделать - получила собственное название: «проблема первой стенки». Все, что выходит из плазмы (нейтроны, протоны, ионы и электромагнитное излучение в диапазоне от инфракрасного до гамма-лучей), разрушает стенку, продукты разрушения попадают в плазму. Проблема стойкости и проблема «не вредности» решаются в противоположных направлениях, т.к. чем тяжелее ион, тем он вреднее (допустимая концентрация тантала и вольфрама в сто раз меньше, чем углерода), а большинство стойких материалов создано на основе именно тяжелых металлов.

Одно время большие надежды возлагались на углеродные материалы и композиты на основе карбидов, боридов и нитридов. Рассматривались пористые и профилированные (с ребрами или иглами) стенки. И вообще, трудно сказать, что не рассматривалось, но в итоге в качестве материала стенок сейчас выбран бериллий.

Токамак

Магнитное поле токамака и поток.

Токама́к (то роидальная ка мера с ма гнитными к атушками) - тороидальная установка для магнитного удержания плазмы с целью достижения условий, необходимых для протекания . Плазма в токамаке удерживается не стенками камеры, которые не способны выдержать необходимую для термоядерных реакций температуру, а специально создаваемым комбинированным магнитным полем - тороидальным внешним и полоидальным полем тока, протекающего по плазменному шнуру. По сравнению с другими установками, использующими магнитное поле для удержания плазмы, использование электрического тока является главной особенностью токамака. Ток в плазме обеспечивает разогрев плазмы и удержание равновесия плазменного шнура в вакуумной камере. Этим токамак, в частности, отличается от стелларатора , являющегося одной из альтернативных схем удержания, в котором и тороидальное, и полоидальное поля создаются с помощью внешних магнитных катушек.

Токамак-реактор на данный момент разрабатывается в рамках международного научного проекта ITER .

История

Предложение об использовании управляемого термоядерного синтеза для промышленных целей и конкретная схема с использованием термоизоляции высокотемпературной плазмы электрическим полем были впервые сформулированы советским физиком О. А. Лаврентьевым в работе середины 1950-го года. Эта работа послужила катализатором советских исследований по проблеме управляемого термоядерного синтеза. А. Д. Сахаров и И. Е. Тамм в 1951 году предложили модифицировать схему, предложив теоретическую основу термоядерного реактора, где плазма имела бы форму тора и удерживалась магнитным полем. Одновременно эта же идея была предожена американскими учеными, но «забыта» до 1970-х годов .

В настоящее время токамак считается наиболее перспективным устройством для осуществления управляемого термоядерного синтеза .

Устройство

Токамак представляет собой тороидальную вакуумную камеру, на которую намотаны катушки для создания тороидального магнитного поля . Из вакуумной камеры сначала откачивают воздух, а затем заполняют её смесью дейтерия и трития . Затем с помощью индуктора в камере создают вихревое электрическое поле . Индуктор представляет собой первичную обмотку большого трансформатора , в котором камера токамака является вторичной обмоткой. Электрическое поле вызывает протекание тока и зажигание в камере плазмы .

Протекающий через плазму ток выполняет две задачи:

  • нагревает плазму так же, как нагревал бы любой другой проводник (омический нагрев);
  • создает вокруг себя магнитное поле. Это магнитное поле называется полоидальным (то есть направленное вдоль линий, проходящих через полюсы сферической системы координат).

Магнитное поле сжимает протекающий через плазму ток. В результате образуется конфигурация, в которой винтовые магнитные силовые линии «обвивают» плазменный шнур. При этом шаг при вращении в тороидальном направлении не совпадает с шагом в полоидальном направлении. Магнитные линии оказываются незамкнутыми, они бесконечно много раз закручиваются вокруг тора, образуя так называемые «магнитные поверхности» тороидальной формы.

Наличие полоидального поля необходимо для стабильного удержания плазмы в такой системе. Так как оно создается за счёт увеличения тока в индукторе, а он не может быть бесконечным, время стабильного существования плазмы в классическом токамаке ограничено. Для преодоления этого ограничения разработаны дополнительные способы поддержания тока. Для этого может быть использована инжекция в плазму ускоренных нейтральных атомов дейтерия или трития или микроволновое излучение .

Кроме тороидальных катушек для управления плазменным шнуром необходимы дополнительные катушки полоидального поля . Они представляют собой кольцевые витки вокруг вертикальной оси камеры токамака.

Одного только нагрева за счет протекания тока недостаточно для нагрева плазмы до температуры, необходимой для осуществления термоядерной реакции. Для дополнительного нагрева используется микроволновое излучение на так называемых резонансных частотах (например, совпадающих с циклотронной частотой либо электронов , либо ионов) или инжекция быстрых нейтральных атомов.

Токамаки и их характеристики

Всего в мире было построено около 300 токамаков. Ниже перечислены наиболее крупные из них.

СССР и Россия

  • Т-3 - первый функциональный аппарат.
  • Т-4 - увеличенный вариант Т-3
  • Т-7 - уникальная установка, в которой впервые в мире реализована относительно крупная магнитная система со сверхпроводящим соленоидом на базе Ниобий олова , охлаждаемого жидким гелием . Главная задача Т-7 была выполнена: подготовлена перспектива для следующего поколения сверхпроводящих соленоидов термоядерной энергетики.
  • Т-10 и PLT - следующий шаг в мировых термоядерных исследованиях, они почти одинакового размера, равной мощности, с одинаковым фактором удержания. И полученные результаты идентичны: на обоих реакторах достигнута температура термоядерного синтеза, а отставание по критерию Лоусона - в 200 раз.
  • Т-15 - реактор сегодняшнего дня со сверхпроводящим соленоидом, дающим поле индукцией 3,6 Тл.

Китай

Европа и Великобритания

  • TM1-MH (англ.) (с 1977 - Castor, с 2007 - Golem) С начала 60-х до 1976-го года действовал в , затем был передан институту физики плазмы академии наук Чешской Республики .
  • JET (англ.) (Joint European Torus) - созданный организацией Евратом в Великобритании . В нём использован комбинированный нагрев: 20 МВт - нейтральная инжекция, 32 МВт - ионно-циклотронный резонанс. Критерий Лоусона в 4-5 раз ниже уровня зажигания.
  • Tore Supra (англ.) - токамак со сверхпроводящими катушками. Находится в исследовательском центре Кадараш (Франция).

США

  • TFTR (англ.) (Test Fusion Tokamak Reactor) - самый большой токамак в США (Принстонский университет) с дополнительным нагревом быстрыми нейтральными частицами. Критерий Лоусона в 5,5 раза ниже порога зажигания. Закрыт в 1997 г.
  • NSTX (англ.) (National Spherical Torus Experiment) - сферический токамак (сферомак) работающий в настоящее время в Принстонском университете. Первая плазма в реакторе получена в 1999 году, через два года после закрытия TFTR.
  • Alcator C-Mod (англ.) - Alcator C-Mod характеризуется самым высоким магнитным полем и давлением плазмы в мире. Работает с 1993 г.
  • DIII-D (англ.) - токамак США, созданный и работающий в компании General Atomic в San Diego.

Япония

  • JT-60 (англ.) - работает в Институте ядерных исследований с 1985 г.

См. также

  • ITER - Международный экспериментальный термоядерный реактор

Примечания

Ссылки

  • Физики из Поднебесной заявляют, что они первыми воплотят термоядерную мечту в реальность

Wikimedia Foundation . 2010 .

Синонимы :

TOKAMAK (сокр. от "тороидальная камера с магн. катушками")- устройство для удержания высокотемпературной с помощью сильного магн. поля. Идея T. была высказана в 1950 академиками И. E. Таммом и А. Д. Сахаровым; первые эксперим. исследования этих систем начались в 1956.

Принцип устройства ясен из рис. 1. Плазма создаётся в тороидальной вакуумной камере, к-рая служит как бы единственным замкнутым витком вторичной обмотки трансформатора. При пропускании нарастающего во времени тока в первичной обмотке трансформатора 1 внутри вакуумной камеры 5 создаётся вихревое продольное элек-трич. поле. При не очень большой начальной газа (обычно используется водород или его изотопы) происходит его электрич. пробой и вакуумная камера заполняется плазмой с последующим нарастанием большого продольного тока I p . В совр. крупных T. ток в плазме составляет неск. миллионов ампер. Этот ток создаёт собственное полоидальное (в плоскости поперечного сечения плазмы) магн. поле В q . Кроме того, для стабилизации плазмы используется сильное продольное магн. поле В f , создаваемое с помощью спец. обмоток тороидального магн. поля. Именно комбинацией тороидального и полоидального магн. полей обеспечивается устойчивое удержание высокотемпературной плазмы (см. Тороидальные системы ),необходимое для осуществления управляемого термоядерного синтеза .

Рис. 1. Схема токамака: 1 - первичная обмотка транс форматора; 2 -катушки тороидального магнитного поля; 3 - лайнер, тонкостенная внутренняя камера для вырав нивания тороидального электрического поля; 4 - катуш ки полоидального магнитного поля; 5 - вакуумная каме ра; б -железный сердечник (магнитопровод) .

Операционные пределы . Магн. поле T. достаточно хорошо удерживает высокотемпературную плазму, но только в определённых пределах изменения её параметров. Первые 2 ограничения относятся к току плазмы I p и её ср. плотности п , выраженной в единицах числа частиц (электронов или ионов) в 1 м 3 . Оказывается, что при заданной величине тороидального магн. поля ток плазмы не может превышать нек-рого предельного значения, иначе плазменный шнур начинает извиваться по винтовой линии и в конце концов разрушается: развивается т. н. неустойчивость срыва тока. Для характеристики предельного тока используется коэф. запаса q по винтовой неустойчивости, определяемый соотношением q = 5B j a 2 /RI p . Здесь а - малый, R - большой радиус плазменного шнура, B j - тороидальное магн. поле, I p - ток в плазме (размеры измеряются в метрах, магн. поле - в теслах, ток - в MA). Необходимым условием устойчивости плазменного шнура является неравенство q >], к-рое наз. к р и т е р и е м К р у-с к а л а - Ш а ф р а н о в а. Эксперименты показывают, что надёжно устойчивый режим удержания достигается лишь при значениях .

Для плотности имеются 2 предела - нижний и верхний. Ниж. предел по плотности связан с образованием т. н. ускоренных, или убегающих электронов . При малой плотности частота столкновений электронов с ионами становится недостаточной для предотвращения их перехода в режим непрерывного ускорения в продольном электрич. поле. Ускоренные до высоких энергий электроны могут представлять опасность для элементов вакуумной камеры, поэтому плотность плазмы выбирается настолько большой, чтобы ускоренных электронов не было. С др. стороны, при достаточно высокой плотности режим удержания плазмы вновь становится неустойчивым из-за радиационных и атомарных процессов на границе плазмы, к-рые приводят к сужению токового канала и развитию винтовой неустойчивости плазмы. Верх. предел по плотности характеризуется безразмерными параметрами My-раками M=nR/B j и Хьюгелла H=nqR/B j (здесь ср. по сечению плотность электронов n измеряется в единицах 10 20 частиц/м 3). Для устойчивого удержания плазмы необходимо, чтобы числа M и H не превышали нек-рых критич. значений.

При нагреве плазмы и повышении её давления появляется ещё один предел, характеризующий максимальное устойчивое значение давления плазмы, p = n(T e +T i) , где Т е, T i -электронная и ионная темп-ры. Этот предел накладывается на величину b, равную отношению ср. давления плазмы к давлению магн. поля; упрощённое выражение для предельного значения b даётся соотношением Тройона b c =gI p /aB j , где g -числовой множитель, равный примерно 3 . 10 -2 .

Термоизоляция . Возможность нагрева плазмы до очень высоких темп-р связана с тем, что в сильном магн. поле траектории заряж. частиц выглядят как спирали, навитые на линии магн. поля. Благодаря этому электроны и ионы длительное время удерживаются внутри плазмы. И только за счёт столкновений и небольших флуктуации электрич. и магн. полей энергия этих частиц может переноситься к стенкам в виде теплового потока. Эти же механизмы определяют величину диффузионных потоков. Эффективность магн. термоизоляции плазмы характеризуется энер-гетич. временем жизни т E = W/P , где W -полное энергосодержание плазмы, a P -мощность нагрева плазмы, необходимая для поддержания её в стационарном состоянии. Величину t E можно рассматривать также как характерное время остывания плазмы, если мощность нагрева внезапно отключается. В спокойной плазме потоки частиц и тепла к стенкам камеры создаются за счёт парных столкновений электронов и ионов. Эти потоки вычисляются теоретически с учётом реальных траекторий заряж. частиц в магн. поле T. Соответствующая теория диффузионных процессов наз. неоклассической (см. Переноса процессы ).В реальной плазме T. всегда присутствуют небольшие флуктуации полей и потоков частиц, поэтому реальные уровни потоков тепла и частиц обычно значительно превышают предсказания неоклассич. теории.

Эксперименты, проведённые на многих T. разл. формы и размеров, позволили суммировать результаты исследований механизмов переноса в виде соответствующих эм-пирич. зависимостей. В частности, были найдены зависимости энергетич. времени жизни т E от осн. параметров плазмы для разл. мод удержания. Эти зависимости наз. с к е й л и н г а м и; они успешно используются для предсказания параметров плазмы во вновь вводимых в строй установках.

Самоорганизация плазмы . В плазме T. постоянно имеются слабонелинейные , к-рые влияют на профили распределения темп-ры, плотности частиц и плотности тока по радиусу, как бы управляют ими. В частности, в центр. области плазменного шнура очень часто присутствуют т. н. пилообразные колебания, отражающие периодически повторяющийся процесс постепенного обострения и затем резкого уплощения профиля темп-ры. Пилообразные колебания предотвращают контракцию тока к магн. оси тора (см. Контракция газового разряда) . Кроме того, в T. время от времени возбуждаются винтовые моды (т. н. т и р и н г-м о д ы), к-рые вне шнура наблюдаются в виде низкочастотных магн. колебаний. Тиринг-моды способствуют установлению более устойчивого распределения плотности тока по радиусу. При недостаточно осторожном обращении с плазмой тиринг-моды могут нарасти настолько, что вызываемые ими возмущения магн. поля разрушают магн. поверхности во всём объёме плазменного шнура, магн. конфигурация разрушается, энергия плазмы выбрасывается к стенкам и ток в плазме прекращается из-за её сильного охлаждения (см. Тиринг-неустойчивости ).

Кроме этих объёмных колебаний существуют моды колебаний, локализованные на границе плазменного шнура. Эти моды очень чувствительны к состоянию плазмы на самой периферии, их поведение усложнено атомарными процессами. Внеш. и внутр. моды колебаний могут сильно влиять на процессы переноса тепла и частиц, они приводят к возможности перехода плазмы из одного режима магн. термоизоляции в другой и обратно. Если в плазме T. распределение частиц по скоростям сильно отличается от , то возникает возможность для развития кинетич. неустойчивостей. Напр., при рождении большого кол-ва убегающих электронов развивается т. н. веерная неустойчивость, приводящая к трансформации продольной энергии электронов в поперечную. Кинетич. неустойчивости развиваются также при наличии ионов с высокой энергией, возникающих при дополнит. нагреве плазмы.

Нагрев плазмы . Плазма любого T. автоматически подогревается за счёт джоулева тепла от протекающего по ней тока. Джоулева энерговыделения достаточно для получения темп-ры в неск. млн. градусов. Для целей управляемого термоядерного синтеза нужны темп-ры >10 8 К, поэтому все крупные T. дополняются мощными системами нагрева плазмы . Для этого используются либо эл--магн. волны разл. диапазонов, либо прямая быстрых частиц в плазму. Для высокочастотного нагрева плазмы удобно использовать резонансы, к-рые отвечают внутр. колебат. процессам в плазме. Напр., нагрев ионной компоненты удобно осуществлять в диапазоне гармоник циклотронных частот либо осн. ионов плазмы, либо специально подобранных ионов-присадок. Нагрев электронов осуществляется при электронно-циклотронном резонансе.

При нагреве ионов с помощью быстрых частиц обычно используются мощные пучки нейтральных атомов. Такие пучки не взаимодействуют с магн. полем и проникают глубоко внутрь плазмы, там они ионизуются и захватываются магн. полем T.

С помощью дополнит, методов нагрева темп-ру плазмы T. удаётся поднять >3·10 8 К, что вполне достаточно для протекания мощной термоядерной реакции. В будущих разрабатываемых T.-реакторах нагрев плазмы будет осуществляться высокоэнергетичными альфа-частицами, возникающими при реакции слияния ядер дейтерия и трития.

Стационарный токамак . Обычно ток в плазме протекает только при наличии вихревого электрич. поля, создаваемого за счёт увеличения магн. потока в индукторе. Индукционный механизм поддержания тока ограничен во времени, так что соответствующий режим удержания плазмы является импульсным. Однако импульсный режим не является единственно возможным, нагрев плазмы может использоваться и для поддержания тока, если наряду с энергией в плазму передаётся и импульс, разный для разных компонент плазмы. Неиндукционное поддержание тока облегчается за счёт генерации тока самой плазмой при её диффузионном расширении к стенкам (бутстрэп-эффект). Бутстрэп-эффект был предсказан неоклассич. теорией и подтверждён затем экспериментально. Эксперименты показывают, что плазма T. может удерживаться стационарно, и гл. усилия по практич. освоению стационарного режима направлены на повышение эффективности поддержания тока.

Дивертор, управление примесями . Для целей управляемого термоядерного синтеза требуется очень чистая плазма на основе изотопов водорода. Чтобы ограничить примесь др. ионов в плазме, в ранних T. плазма ограничивалась т. н. л и м и т е р о м (рис. 2, а) , т. е. диафрагмой, не допускающей соприкосновения плазмы с большой поверхностью камеры. В совр. T. используется гораздо более сложная диверторная конфигурация (рис. 2, б) , создаваемая катушками полоидального магн. поля. Эти катушки необходимы даже для плазмы круглого сечения: с их помощью создаётся вертикальная компонента магн. поля, к-рая при взаимодействии с осн. током плазмы не позволяет плазменному витку выброситься на стенку по направлению большого радиуса. В диверторной конфигурации витки полоидального магн. поля расположены так, чтобы сечение плазмы было вытянуто в вертикальном направлении. При этом замкнутые магн. поверхности сохраняются только внутри , снаружи её силовые линии уходят внутрь диверторных камер, где происходит нейтрализация потоков плазмы, вытекающих из осн. объёма. В диверторных камерах удаётся смягчить нагрузку от плазмы на диверторные пластины за счёт дополнит. охлаждения плазмы при атомарных взаимодействиях.

Рис. 2. Поперечный разрез плазмы круглого сечения (а )и вертикально вытянутого с образованием диверторной конфигурации (6): 1-плазма; 2- лимитер; 3 - стенка камеры; 4 - сепаратриса; 5 -диверторная камера; 6 - ди-верторные пластины .

Токамак-реактор . Гл. целью исследований на установках T. является освоение концепции магн. удержания плазмы для созданий термоядерного реактора . На T. удаётся создать устойчивую высокотемпературную плазму с темп-рой и плотностью, достаточными для термоядерного реактора; установлены закономерности для термоизоляции плазмы; осваиваются методы поддержания тока и управления уровнем примесей. Работы на T. переходят из фазы чисто физ. исследований в фазу создания эксперим. .

Лит.: Арцимович Л. А., Управляемые , 2 изд., M., 1963; Лукьянов С. Ю., Горячая плазма и управляемый ядерный синтез, M., 1975; Kadomtsev B. В., Tokamak plasma a complex physical system, L., 1992. Б. Б. Кадомцев .

В токамаке удерживается не стенками камеры, которые не способны выдержать необходимую для термоядерных реакций температуру, а специально создаваемым комбинированным магнитным полем - тороидальным внешним и полоидальным полем тока, протекающего по плазменному шнуру. По сравнению с другими установками, использующими магнитное поле для удержания плазмы, использование электрического тока является главной особенностью токамака. Ток в плазме обеспечивает разогрев плазмы и удержание равновесия плазменного шнура в вакуумной камере. Этим токамак, в частности, отличается от стелларатора , являющегося одной из альтернативных схем удержания, в котором и тороидальное, и полоидальное поля создаются с помощью внешних магнитных катушек.

Токамак-реактор на данный момент разрабатывается в рамках международного научного проекта ITER .

Энциклопедичный YouTube

  • 1 / 5

    Предложение об использовании управляемого термоядерного синтеза для промышленных целей и конкретная схема с использованием термоизоляции высокотемпературной плазмы электрическим полем были впервые сформулированы советским физиком О. А. Лаврентьевым в работе середины 1950-го года. Эта работа послужила катализатором советских исследований по проблеме управляемого термоядерного синтеза. А. Д. Сахаров и И. Е. Тамм в 1951 году предложили модифицировать схему, предложив теоретическую основу термоядерного реактора, где плазма имела бы форму тора и удерживалась магнитным полем. Одновременно эта же идея была предложена американскими учёными, но «забыта» до 1970-х годов .

    В настоящее время токамак считается наиболее перспективным устройством для осуществления управляемого термоядерного синтеза .

    Устройство

    Токамак представляет собой тороидальную вакуумную камеру , на которую намотаны катушки для создания тороидального магнитного поля . Из вакуумной камеры сначала откачивают воздух, а затем заполняют её смесью дейтерия и трития . Затем с помощью индуктора в камере создают вихревое электрическое поле . Индуктор представляет собой первичную обмотку большого трансформатора , в котором камера токамака является вторичной обмоткой. Электрическое поле вызывает протекание тока и зажигание в камере плазмы .

    Протекающий через плазму ток выполняет две задачи:

    • нагревает плазму так же, как нагревал бы любой другой проводник (омический нагрев);
    • создаёт вокруг себя магнитное поле. Это магнитное поле называется полоидальным (то есть направленное вдоль линий, проходящих через полюсы сферической системы координат).

    Магнитное поле сжимает протекающий через плазму ток. В результате образуется конфигурация, в которой винтовые магнитные силовые линии «обвивают» плазменный шнур. При этом шаг при вращении в тороидальном направлении не совпадает с шагом в полоидальном направлении. Магнитные линии оказываются незамкнутыми, они бесконечно много раз закручиваются вокруг тора, образуя так называемые «магнитные поверхности» тороидальной формы.

    Наличие полоидального поля необходимо для стабильного удержания плазмы в такой системе. Так как оно создается за счёт увеличения тока в индукторе, а он не может быть бесконечным, время стабильного существования плазмы в классическом токамаке пока ограничено несколькими секундами. Для преодоления этого ограничения разработаны дополнительные способы поддержания тока. Для этого может быть использована инжекция в плазму ускоренных нейтральных атомов дейтерия или трития или микроволновое излучение .

    Кроме тороидальных катушек для управления плазменным шнуром необходимы дополнительные катушки полоидального поля . Они представляют собой кольцевые витки вокруг вертикальной оси камеры токамака.

    Одного только нагрева за счёт протекания тока недостаточно для нагрева плазмы до температуры, необходимой для осуществления термоядерной реакции. Для дополнительного нагрева используется микроволновое излучение на так называемых резонансных частотах (например, совпадающих с циклотронной частотой либо электронов , либо ионов) или инжекция быстрых нейтральных атомов.

    УСТРОЙСТВО И РАБОТА ТОКАМАКА

    Принцип действия, принципиальная схема токамака, параметры установки, устойчивость тороидального плазменного шнур, параметр удержания b , энергетическое время жизни.

    Принцип действия. Принципиальная схема

    В заключительной главе подробнее рассмотрим устройство и особенности работы токамака - наиболее сложной, но, пожалуй, и наиболее важной плазменной установки. Именно с токамаком сейчас связывают надежду на практическую реализацию управляемого термоядерного синтеза. Сооружаемый в настоящее время международным сообществом термоядерный реактор-токамак ИТЭР- это решающий шаг на пути создания к середине века термоядерной энергетики. Токамак – название созданной в соответствии с предложением и в середине прошлого века в Курчатовском институте установки ТОковая КАмера с МАГнитными катушками (Г трансформировали в К при характерном в русском языке смягчении согласных).

    Токамак – это трансформатор, вторичной «обмоткой» которого является создаваемый в плазме ток. Магнитная термоизоляция обеспечивается сильным тороидальным магнитным полем B j º Bt , которое вместе с полоидальным полем B q º Bp тока Ip создает необходимую для подавления тороидального дрейфа плазмы и сохранения устойчивости шнура винтовую конфигурацию магнитных силовых линий (рис.13.1а). Показанная на рис.13.1 проводящая оболочка (кожух) также служит для пассивной стабилизации плазменного шнура при его кратковременных возмущениях.

    Связь между толщиной кожуха и характерным временем возмущения t 1/2 , которое демпфируется возникающими в кожухе при таком изменении магнитного потока токами Фуко, определяется глубиной скин-слоя, которая в практических единицах может быть представлена в виде очень полезной формулы: https://pandia.ru/text/79/389/images/image002_55.gif" width="69" height="25 src=">- удельное сопротивление материала кожуха, отнесенное к удельному сопротивлению меди при 200С, t 1/2 –полупериод возмущения.

    Генерация и поддержание тока в плазме осуществляется с помощью индуктора , который при изменении тока в нем создает на тороидальной оси ЭДС ε = - d Y / dt , где Y - магнитный поток внутри плазменного кольца с током. Для электрического пробоя заполняющего камеру газа необходимо значительно большее, чем для поддержания тока, значение ε, поэтому при создании плазмы ток в обмотках индуктора меняют значительно

    position:absolute; z-index:59;left:0px;margin-left:251px;margin-top:131px;width:12px;height:39px">

    Bz

    https://pandia.ru/text/79/389/images/image008_21.gif" alt="Подпись:" align="left hspace=12 alt=" width="407" height="65">

    быстрее, чем в фазе его долговременного поддержания. Для того, чтобы поле индуктора не искажало при пробое тороидальное поле, а также необходимую для удержания плазмы винтовую магнитную конфигурацию, используют магнитопроводы из материала с высокой магнитной проницаемостью (магнитомягкое железо), замыкающие магнитный поток вне индуктора. Индуктор может быть с железным сердечником, так и воздушным - вообще без использования железа. В последнем случае устанавливают полоидальные катушки, которые компенсируют поле индуктора в области плазмы. Равновесие кругового тока в продольном (по отношении к нему) магнитном поле достигается путем приложения дополнительного вертикального магнитного поля Bz , создающего направленную к оси системы силу. Поле Bz создается полоидальными управляющими обмотками (рис.9.1б). На рис.9.2 показаны основные элементы электромагнитной системы токамака, и циклограмма его работы. Кроме указанных обмоток в токамаках дополнительно устанавливают катушки для обеспечения равновесия плазмы по вертикали и коррекции магнитного поля.

    Устойчивость тороидального плазменного шнура

    Устойчивость тороидального плазменного шнура, возможна лишь при выполнении критерия Крускала - Шафранова q = (a / R )(Bt / Bp ) >1 , для чего ток плазмы Ip не должен превышать определенного значения. Действительно, связь поля и тока

    position:absolute;z-index:5;left:0px;margin-left:216px; margin-top:177px;width:42px;height:41px">position:absolute; z-index:24;left:0px;margin-left:39px;margin-top:99px;width:62px;height:119px">


    Рис.13.2а Электромагнитная система токамака.

    где , l и I выражены соответственно в эрстедах, сантиметрах и амперах, в случае аксиальной симметрии (H ∙2 p r =0,4 p I ) дает для поля H =0,2 I / r . Если у токамака большое аспектовое отношение A = R / a , то в первом приближении полоидальное поле на границе плазменного шнура Bp » 0,2 Ip / a , и q =(5 a 2/ R )(Bp / Ip ) >1

    Таким образом, существует ограничение на величину тока в плазме.

    n . При малых значениях n в вихревом поле E = ε/2 p R ne £ 0,07j p , где плотность плазмы в [м-3], а плотность тока в [МА/м2].

    Рис.13.2б Циклограмма работы токамака (качественно): JT –ток в катушках тороидального соленоида, J и - ток в обмотке индуктора, Jp - ток плазмы, J у. к. ток в управляющих катушках (увеличивается с ростом T плазмы).

    Другие ограничения связаны с плотностью плазмы n . При малых значениях n в вихревом поле E = ε/2 p R электроны могут перейти в режим ускорения («уйти в просвист»). Критическая для такого режима концентрация плазмы определяется критерием Разумовой ne £ 0,07j p , где плотность плазмы в [м-3], а плотность тока в [МА/м2]. То есть, предел по току плазмы линейно зависит от ее концентрации Ip ³ (p ka 2/0,07) ne . При больших n также существует предел по плотности nMH £ 2 Bt / qR (предел Мураками –Хьюгелла), связанный с балансом мощностей в периферийной плазме. При больших плотностях, когда потери плазмы за счет излучения и теплопроводности начинают превышать выделение в ней энергии за счет протекающего по плазме тока, происходит контракция (сжатие) плазменного шнура.

    Визуально область рабочих режимов токамака удобно проиллюстрировать так называемой диаграммой Хьюгелла-Мураками (рис.13.3). На ней вместо плотности по оси абсцисс откладывают величину ей пропорциональную для токамака с заданными большим радиусом плазмы и значением тороидального поля M = (R / Bt ) n (число Мураками). Область 1-2 соответствует пределу Разумовой, связанному с убегающими электронами, область 2-3 определяется МГД устойчивостью в соответствии с критерием Крускала-Шафранова,

    Рис.13.3 Диаграмма Хьюгелла-Мураками устойчивых режимов токамака.

    область 3-4 – это предел по плотности Мураками. Энерговыделение в плазме при протекании в ней тока пропорционально QOH µ Ip 2 , а потери на излучение Qr µ n 2 e . Из (13.1) следует, что QOH µ [(Bt / R ) q ]2, а отношение Qr / QOH µ n 2 (R / Bt )2 q 2 º H 2 . Число H называется числом Хьюгелла, при сохранении пропорциональности между энерговыделением и излучением (H = cons t ) q -1 пропорционально числу Мураками M . Участок диаграммы 4-1 и отражает эту пропорциональность.

    При нагреве плазмы возникают проблемы, связанные с МГД равновесием плазменного шнура в токамаке. Из условия равновесия плазмы в МГД приближении суммарное давление плазмы и магнитного поля в шнуре должны уравновешиваться давлением магнитного поля снаружи от плазменного шнура. С ростом температуры давление плазмы < P >= nkT растет и, соответственно, растет сила FRpl , необходимая для удержания на месте этого раздувающегося под внутренним давлением плазменного «баллона». Грубо эта сила может быть оценена из работы по «растяжению баллона» W » < P >2 p R p a 2 , FRpl = - dW / dR = =2 p 2 a 2< P > . Следовательно, с ростом давления плазмы надо увеличивать и удерживающее плазму на радиусе R вертикальное поле Bz . Посмотрим, что при этом происходит с суммарным полоидальным полем, которое складывается из поля тока и внешнего вертикального поля Bz . Допустим, что поле Bz однородно по R , тогда в случае для обеспечения равновесия оно должно совпадать с полем тока на его внешней стороне, усиливая это поле. На внутренней же стороне поле BZ ослабляет поле тока и с ростом давления плазмы возможна ситуация, когда на некотором расстоянии от центра токамака оно скомпенсирует последнее с образованием так называемой x – точки . Силовые линии вне нее разомкнуты. С увеличением давления и, соответственно, необходимого для удержания плазмы поля Bz x -точка приближается к плазменному шнуру и при b q = < p >/(B 2 q /8 p )= R / a касается его, что позволяет ей свободно «вытекать» из установки.

    То есть, при b q < R / a (13.2)

    удержание невозможно.

    B q = - Bz

    position:absolute; z-index:29;left:0px;margin-left:159px;margin-top:41px;width:50px;height:32px">

    + BZ

    font-size:10.0pt">Рис.13.4 Суперпозиция поля тока и вертикального поля, приводящая к возникновению x -точки.

    Параметр удержания b .

    Ограничение по полоидальному бета приводит и ограничению по полному значению этого параметра в токамаке. Полное b находится из сложения векторов тороидального и полоидального полей и равно

    Выражая тороидальное поле через полоидальное и запас устойчивости q =(a / R )(Bt / B q ) получаем

    Учитывая (13.2) окончательно имеем:

    Так как А и q больше единицы, то значение b ограничено сверху, например, при А = 3 и q =2, что примерно соответствует значениям, закладываемым в проектах термоядерного реактора на основе токамака, согласно (13.3) b max » 0,08.

    Мы рассматривали токамак с круглым сечением плазмы, однако, в проекте реактора ИТЭР сечение плазмы вытянуто вдоль вертикальной оси (рис.13.5). Тому несколько причин. Первая, в тороидальном соленоиде D –образной формы при той же длине обмотки и, соответственно, мощности питания можно запасти значительно больше энергии магнитного поля, кроме того, такой соленоид выдерживает значительно большие механические нагрузки, возникающие при сильных магнитных полях, чем соленоид с круглыми катушками. Достаточно упомянуть, что при поле 0,5 Тл внутренне давление со стороны поля на катушки составляет одну избыточную атмосферу. Учитывая, что магнитное давление квадратично зависит от поля, для поля в 5 Тл, которое необходимо для реактора, получаем давление в 100 раз большее. Сила, действующая на единицу длины проводника, в практической системе единиц равна:

    https://pandia.ru/text/79/389/images/image043_4.gif" width="184" height="45 src=">

    Из-за того, что поле в тороидальном соленоиде растет к центру µ 1/ Bt , на различные участки катушки действует разная сила, создающая изгибающий момент относительно точки опоры катушки. Суммарная сила, действующая на катушку (см. рис.13.5), направлена к центру, ее легко оценить из запасенной в объеме V полной энергии W маг магнитного поля: FR = - dW маг/ dR » - (B 02/8 p ) V » (B 02/8 p )4 p 2 a 2 . (Катушку тороидального соленоида можно представить как прижимаемый к внутренней опоре тонкий обруч). Так вот, выполнение условия grc = const , где r – переменный радиус кривизны катушки, позволяет создать так называемую безмоментную катушку , что резко повышает ее прочностные свойства. Одновременно условие g (R , z ) rc (R , z )= const определяет форму такой катушки, которая и имеет D - образный вид.

    Энергетическое время жизни

    Но кроме «инженерных» вытянутое вдоль вертикальной оси сечение плазмы имеет существенные физические преимущества для повышения параметров удерживаемой плазмы. С увеличением вытянутости k = b / a (см. рис.13.5) при том же большом радиусе возрастает ток плазмы и время ее удержания. https://pandia.ru/text/79/389/images/image046_4.jpg" align="left" width="225" height="263 src=">Запас устойчивости для

    плазмы некруглого сечения q (k ) » q (1+ k 2)/2 , что в соответствии с (13.1) при том же запасе устойчивости позволяет получить большие значения Ip . Скейлинг или закон подобия, полученный по результатам измерений на многих установках, для энергетического времени жизни t E дает следующую зависимость от тока и вытянутости плазмы t E µ Ip 0,9 k 0,8 . Таким образом, увеличение k с учетом q (k ) приводит к существенному возрастанию t E .

    Насколько увеличится значение бэта при переходе к вытянутому сечению можно оценить, если в знаменаR / a заменить на 2 p R / l , где l – длина периметра вытянутого сечения плазмы, которая примерно в (1+ k )/2 раз больше длины окружности с радиусом a .