Меню

Неорганическая химия в реакциях. Справочник

Сантехника

Неорганическая химия - раздел химии, который связан с изучением строения, реакционной способности и свойств всех химических элементов и их неорганических соединений. Эта область химии охватывает все соединения, за исключением органических веществ (класса соединений, в которые входит углерод, за исключением нескольких простейших соединений, обычно относящихся к неорганическим). Различия между органическими и неорганическими соединениями , содержащими , являются по некоторым представлениям произвольными. Неорганическая химия изучает химические элементы и образуемые ими простые и сложные вещества (кроме органических). Число известных сегодня неорганических веществ приближается к 500 тысячам.

Теоретическим основанием неорганической химии является периодический закон и основанная на нём периодическая система Д. И. Менделеева . Главной задачей неорганической химии является разработка и научное обоснование способов создания новых материалов с нужными для современной техники свойствами.

Классификация химических элементов

Периодическая система химических элементов (таблица Менделеева ) - классификация химических элементов, которая устанавливает зависимость различных свойств химических элементов от заряда атомного ядра. Система — это графическое выражение периодического закона, . Её первоначальный вариант был разработан Д. И. Менделеевым в 1869-1871 годах и назывался «Естественная система элементов», который устанавливал зависимость свойств химических элементов от их атомной массы. Всего предложено несколько сотен вариантов изображения периодической системы, но в современном варианте системы предполагается сведение элементов в двумерную таблицу, в которой каждый столбец (группа) определяет основные физико-химические свойства, а строки представляют собой периоды, в некоторой степени подобные друг другу.

Простые вещества

Они состоят из атомов одного химического элемента (являются формой его существования в свободном состоянии). В зависимости от того, какова химическая связь между атомами, все простые вещества в неорганической химии разделяются на две основные группы: и . Для первых характерна металлическая связь, для вторых - ковалентная. Также выделяются две примыкающие к ним группы - металлоподобных и неметаллоподобных веществ. Существует такое явление как аллотропия, которое состоит в возможности образования нескольких типов простых веществ из атомов одного и того же элемента, но с разным строением кристаллической решетки; каждый из таких типов называется аллотропной модификацией.

Металлы

(от лат. metallum - шахта, рудник) - группа элементов, обладающая характерными металлическими свойствами, такими как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность и металлический блеск. Из 118 химических элементов, открытых на данный момент, к металлам относят:

  • 38 в группе переходных металлов,
  • 11 в группе лёгких металлов,
  • 7 в группе полуметаллов,
  • 14 в группе лантаноиды+ лантан,
  • 14 в группе актиноиды + актиний,
  • вне определённых групп .

Таким образом, к металлам относится 96 элементов из всех открытых.

Неметаллы

Химические элементы с типично неметаллическими свойствами, занимающие правый верхний угол Периодической системы элементов. В молекулярной форме в виде простых веществ в природе встречаются

Занятие 2

Классификация химических реакций в неорганической химии

Химические реакции классифицируют по различным признакам.

    По числу исходных веществ и продуктов реакции

    Разложение – реакция, в которой из одного сложного вещества образуются два и более простых или сложных веществ

2KMnO 4 → K 2 MnO 4 + MnO 2 + O 2

    Соединение – реакция, в результате которой из двух и более простых или сложных веществ, образуется одно более сложное

NH 3 + HCl → NH 4 Cl

    Замещение – реакция, протекающая между простыми и сложными веществами, при которой атомы простого вещества замещаются на атомы одного из элементов в сложном веществе.

Fe + CuCl 2 → Cu + FeCl 2

    Обмен – реакция, при которой два сложных вещества обмениваются своими составными частями

Al 2 O 3 + 3H 2 SO 4 → Al 2 (SO 4) 3 + 3H 2 O

Одна из реакций обмена реакция нейтрализации – это реакция между кислотой и основанием, в результате которой получается соль и вода.

NaOH + HCl → NaCl + H 2 O

    По тепловому эффекту

    Реакции, протекающие с выделением тепла, называются экзотермическими реакциями.

С + О 2 → СО 2 + Q

2) Реакции, протекающие с поглощением тепла, называются эндотермическими реакциями.

N 2 + O 2 → 2NO – Q

    По признаку обратимости

    Обратимые – реакции, проходящие при одних и тех условиях в двух взаимопротивоположных направлениях.

    Реакции, которые протекают только в одном направлении и завершаются полным превращением исходных веществ в конечные, называются необратимыми, при этом должен выделяться газ, осадок, или малодиссоциирующее вещество- вода.

BaCl 2 + H 2 SO 4 → BaSO 4 ↓ + 2HCl

Na 2 CO 3 +2HCl → 2NaCl + CO 2 + H 2 O

    Окислительно-восстановительные реакции – реакции, протекающие с изменением степени окисления.

Са + 4HNO 3 → Ca(NO 3) 2 + 2NO 2 + 2H 2 O

И реакции, протекающие без изменения степени окисления.

HNO 3 + KOH → KNO 3 + H 2 O

5.Гомомгенные реакции, если исходные вещества и продукты реакции находятся в одном агрегатном состоянии. И гетерогенные реакции, если продукты реакции и исходные вещества находятся в разных агрегатных состояниях.

Например: синтез аммиака.

Окислительно-восстановительные реакции.

Различают два процесса:

Окисление – это отдача электронов, в результате степень окисления увеличивается. Атом молекула или ион, отдающий электрон называется восстановителем .

Mg 0 - 2e → Mg +2

Восстановление – процесс присоединения электронов, в результате степень окисления уменьшается. Атом молекула или ион, присоединяющий электрон называется окислителем .

S 0 +2e → S -2

O 2 0 +4e → 2O -2

В окислительно–восстановительных реакциях должно соблюдаться правило электронного баланса (число присоединенных электронов должно быть равно числу отданных, свободных электронов быть не должно). А так же должен соблюдаться атомный баланс (число одноименных атомов в левой части должно быть равно числу атомов в правой части)

Правило написание окислительно-восстановительных реакций.

    Написать уравнение реакции

    Поставить степени окисления

    Найти элементы, у которых изменяется степень окисления

    Выписать попарно их.

    Найти окислитель и восстановитель

    Написать процесс окисление или восстановления

    Уравнять электроны, пользуясь правилом электронного баланса (найти н.о.к.), расставив коэффициенты

    Написать суммарное уравнение

    Поставить коэффициенты в уравнение химической реакции

KClO 3 → KClO 4 + KCl; N 2 + H 2 → NH 3 ; H 2 S + O 2 → SO 2 + H 2 O; Al + O 2 = Al 2 O 3 ;

Сu + HNO 3 → Cu(NO 3) 2 + NO + H 2 O; KClO 3 → KCl + O 2 ; P + N 2 O = N 2 + P 2 O 5 ;

NO 2 + H 2 O = HNO 3 + NO

. Скорость химических реакций. Зависимость скорости химических реакций от концентрации, температуры и природы реагирующих веществ.

Химические реакции протекают с разными скоростями. Изучением скорости химической реакции, а также выявлением её зависимости от условий проведения процесса занимается наука - химическая кинетика.

υ гомогенной реакции определяется изменением количества вещества в единице объёма:

υ =Δ n / Δt ∙V

где Δ n – изменение числа молей одного из веществ (чаще всего исходного, но может быть и продукта реакции), (моль);

V – объем газа или раствора (л)

Поскольку Δ n / V = ΔC (изменение концентрации), то

υ =Δ С / Δt (моль/л∙ с)

υ гетерогенной реакции определяется изменением количества вещества в единицу времени на единице поверхности соприкосновения веществ.

υ =Δ n / Δt ∙ S

где Δ n – изменение количества вещества (реагента или продукта), (моль);

Δt – интервал времени (с, мин);

S – площадь поверхности соприкосновения веществ (см 2 , м 2)

Почему скорость разных реакций не одинакова?

Для того чтобы началась химическая реакция, молекулы реагирующих веществ должны столкнуться. Но не каждое их столкновение приводит к химической реакции. Для того чтобы столкновение привело к химической реакции, молекулы должны иметь достаточно высокую энергию. Частицы, способные при столкновении, вступать в химическую реакцию, называются активными. Они обладают избыточной энергией по сравнению со средней энергией большинства частиц – энергией активации Е акт . Активных частиц в веществе намного меньше, чем со средней энергией, поэтому для начала многих реакций системе необходимо сообщить некоторую энергию (вспышка света, нагревание, механический удар).

Энергетический барьер (величина Е акт ) разных реакций различен, чем он ниже, тем легче и быстрее протекает реакция.

2. Факторы, влияющие на υ (количество соударений частиц и их эффективность).

1) Природа реагирующих веществ: их состав, строение => энергия активации

▪ чем меньше Е акт , тем больше υ;

2) Температура : при t на каждые 10 0 С, υ в 2-4 раза (правило Вант-Гоффа).

υ 2 = υ 1 ∙ γ Δt/10

Задача 1. Скорость некоторой реакции при 0 0 С равна 1 моль/л ∙ ч, температурный коэффициент реакции равен 3. Какой будет скорость данной реакции при 30 0 С?

υ 2 = υ 1 ∙ γ Δt/10

υ 2 =1∙3 30-0/10 = 3 3 =27 моль/л∙ч

3) Концентрация: чем больше, тем чаще происходят соударения и υ . При постоянной температуре для реакции mA + nB = C по закону действующих масс:

υ = k ∙ С A m C B n

где k – константа скорости;

С – концентрация (моль/л)

Закон действующих масс:

Скорость химической реакции пропорциональна произведению концентраций реагирующих веществ, взятых в степенях, равных их коэффициентам в уравнении реакции.

Задача 2. Реакция идет по уравнению А +2В → С. Во сколько раз и как изменится скорость реакции, при увеличении концентрации вещества В в 3 раза?

Решение:υ = k ∙ С A m ∙ C B n

υ = k ∙ С A ∙ C B 2

υ 1 = k ∙ а ∙ в 2

υ 2 = k ∙ а ∙ 3 в 2

υ 1 / υ 2 = а ∙ в 2 / а ∙ 9 в 2 = 1/9

Ответ: увеличится в 9 раз

Для газообразных веществ скорость реакции зависит от давления

Чем больше давление, тем выше скорость.

4) Катализаторы – вещества, которые изменяют механизм реакции, уменьшают Е акт => υ .

▪ Катализаторы остаются неизменными по окончании реакции

▪ Ферменты – биологические катализаторы, по природе белки.

▪ Ингибиторы – вещества, которые ↓ υ

1. При протекании реакции концентрация реагентов:

1) увеличивается

2) не изменяется

3) уменьшается

4) не знаю

2. При протекании реакции концентрация продуктов:

1) увеличивается

2) не изменяется

3) уменьшается

4) не знаю

3. Для гомогенной реакции А+В → … при одновременном увеличении молярной концентрации исходных веществ в 3 раза скорость реакции возрастает:

1) в 2 раза

2) в 3 раза

4) в 9 раз

4. Скорость реакции H 2 + J 2 →2HJ понизится в 16 раз при одновременном уменьшении молярных концентраций реагентов:

1) в 2 раза

2) в 4 раза

5. Скорость реакции CO 2 + H 2 → CO + H 2 O при увеличении молярных концентраций в 3 раза (CO 2) и в 2 раза (H 2) возрастает:

1) в 2 раза

2) в 3 раза

4) в 6 раз

6. Скорость реакции C (T) + O 2 → CO 2 при V-const и увеличении количеств реагентов в 4 раза возрастает:

1) в 4 раза

4) в 32 раза

10. Скорость реакции А+В → … увеличится при:

1) понижении концентрации А

2) повышении концентрации В

3) охлаждении

4) понижении давления

7. Скорость реакции Fe + H 2 SO 4 → FeSO 4 + H 2 выше при использовании:

1) порошка железа, а не стружек

2) железных стружек, а не порошка

3) концентрированной H 2 SO 4 , а не разбавленной H 2 SO 4

4) не знаю

8. Скорость реакции 2H 2 O 2 2H 2 O + O 2 будет выше, если использовать:

1) 3%-й раствор H 2 O 2 и катализатор

2) 30%-й раствор H 2 O 2 и катализатор

3) 3%-й раствор H 2 O 2 (без катализатора)

4) 30%-й раствор H 2 O 2 (без катализатора)

Химическое равновесие. Факторы, влияющие на смещение равновесие. Принцип Ле-Шателье.

Химические реакции по направлению их протекания можно разделить

Необратимые реакции протекают только в одном направлении (реакции ионного обмена с , ↓, мдс, горения и некоторые др.)

Например, AgNO 3 + HCl → AgCl↓ + HNO 3

Обратимые реакции при одних и тех же условиях протекают в противоположных направлениях (↔).

Например, N 2 + 3H 2 ↔ 2NH 3

Состояние обратимой реакции, при котором υ = υ называется химическим равновесием.

Чтобы реакция на химических производствах проходила как можно полнее, необходимо сместить равновесие в сторону продукта. Для того, чтобы определить, как тот или иной фактор изменит равновесие в системе, используют принцип Ле Шателье (1844 г.):

Принцип Ле Шателье: Если на систему, находящуюся в состоянии равновесия, оказать внешнее воздействие (изменить t, р, С), то равновесие сместится в ту сторону, которая ослабит это воздействие .

Равновесие смещается:

1) при С реаг →,

при С прод ← ;

2) при p (для газов) - в сторону уменьшения объема,

при ↓ р – в сторону увеличения V;

если реакция протекает без изменения числа молекул газообразных веществ, то давление не влияет на равновесие в данной системе.

3) при t – в сторону эндотермической реакции (- Q),

при ↓ t – в сторону экзотермической реакции (+ Q).

Задача 3. Как надо изменить концентрации веществ, давление и температуру гомогенной системы PCl 5 ↔ PCl 3 + Cl 2 – Q , чтобы сместить равновесие в сторону разложения PCl 5 (→)

↓ С (PCl 3) и С (Cl 2)

Задача 4. Как сместиться химическое равновесие реакции 2СО + О 2 ↔ 2СО 2 + Q при

а) повышении температуры;

б) повышении давлении

1. Способ, смещающий равновесие реакции 2CuO(T) + CO Cu 2 O(T) + CO 2 вправо (→), - это:

1) увеличение концентрации угарного газа

2) увеличение концентрации углекислого газа

3) уменьшение концентрации оксида мели (I)

4) уменьшение концентрации оксида меди (II)

2. В гомогенной реакции 4HCl + O 2 2Cl 2 + 2H 2 O при повышении давления равновесие сместится:

2) вправо

3) не сместится

4) не знаю

8. При нагревании равновесие реакции N 2 + O 2 2NO – Q:

1) сместится вправо

2) сместится влево

3) не сместится

4) не знаю

9. При охлаждении равновесие реакции H 2 + S H 2 S + Q:

1) сместится влево

2) сместится вправо

3) не сместится

4) не знаю

  1. Классификация химических реакций в неорганической и органической химии

    Документ

    Задания А 19 (ЕГЭ 2012 г) Классификация химических реакций в неорганической и органической химии . К реакциям замещения относится взаимодействие: 1) пропена и воды, 2) ...

  2. Тематическое планирование уроков химии в 8-11 классах 6

    Тематическое планирование

    1 Химические реакции 11 11 Классификация химических реакций в неорганической химии . (С) 1 Классификация химических реакций в органической химии . (С) 1 Скорость химических реакций . Энергия активации. 1 Факторы, влияющие на скорость химических реакций ...

  3. Вопросы к экзаменам по химии для студентов 1 го курса ну(К)орк фо

    Документ

    Метана, применение метана. Классификация химических реакций в неорганической химии . Физические и химические свойства и применение этилена. Химическое равновесие и условия его...

  4. Химические реакции – это процессы, в результате которых из одних веществ образуются другие, отличающиеся от них по составу и (или) строению.

    Классификация реакций:

    I. По числу и составу реагирующих веществ и продуктов реакции:

    1) Реакции, идущие без изменения состава вещества:

    В неорганической химии это реакции превращения одних аллотропных модификаций в другие:

    C (графит) → C (алмаз); P (белый) → P (красный).

    В органической химии это реакции изомеризации – реакции, в результате которых из молекул одного вещества образуются молекулы других веществ того же качественного и количественного состава, т.е. с той же молекулярной формулой, но другим строением.

    СН 2 -СН 2 -СН 3 → СН 3 -СН-СН 3

    н-бутан 2-метилпропан (изобутан)

    2) Реакции, идущие с изменением состава вещества:

    а) Реакции соединения (в органической химии присоединения) – реакции, в ходе которых из двух и более веществ образуется одно более сложное: S + O 2 → SO 2

    В органической химии это реакции гидрирования, галогенирования, гидрогалогенирования, гидратации, полимеризации.

    СН 2 = СН 2 + НОН → СН 3 – СН 2 ОН

    б) Реакции разложения (в органической химии отщепления, элиминирования) – реакции, в ходе которых из одного сложного вещества образуется несколько новых веществ:

    СН 3 – СН 2 ОН → СН 2 = СН 2 + Н 2 О

    2KNO 3 →2KNO 2 + O 2

    В органической химии примеры реакций отщепления - дегидрирование, дегидратация, дегидрогалогенирование, крекинг.

    в) Реакции замещения – реакции, в ходе которых атомы простого вещества замещают атомы какого-нибудь элемента в сложном веществе (в органической химии – реагентами и продуктами реакции часто являются два сложных вещества).

    CH 4 + Cl 2 → CH 3 Cl +HCl ; 2Na+ 2H 2 O→ 2NaOH + H 2

    Примеры реакций замещения, не сопровождающихся изменением степеней окисления атомов, крайне немногочисленны. Следует отметить реакцию оксида кремния с солями кислородсодержащих кислот, которым отвечают газообразные или летучие оксиды:

    СаСО 3 + SiO 2 = СаSiO 3 + СО 2

    Са 3 (РО 4) 2 + ЗSiO 2 = ЗСаSiO 3 + Р 2 О 5

    г) Реакции обмена – реакции, в ходе которых два сложных вещества обмениваются своими составными частями:

    NaOH + HCl → NaCl + H 2 O,
    2CH 3 COOH + CaCO 3 → (CH 3 COO) 2 Ca + CO 2 + H 2 O

    II. По изменению степеней окисления химических элементов, образующих вещества

    1) Реакции, идущие с изменением степеней окисления, или ОВР:

    ∙2| N +5 + 3e – → N +2 (процесс восстановления, элемент – окислитель),

    ∙3| Cu 0 – 2e – → Cu +2 (процесс окисления, элемент – восстановитель),



    8HNO 3 + 3Cu → 3Cu(NO 3) 2 + 2NO + 4H 2 O.

    В органической химии:

    C 2 H 4 + 2KMnO 4 + 2H 2 O → CH 2 OH–CH 2 OH + 2MnO 2 + 2KOH

    2) Реакции, идущие без изменения степеней окисления химических элементов:

    Li 2 O + H 2 O → 2LiOH,
    HCOOH + CH 3 OH → HCOOCH 3 + H 2 O

    III. По тепловому эффекту

    1) Экзотермические реакции протекают с выделением энергии:

    С + О 2 → СО 2 + Q,
    СH 4 + 2O 2 → CO 2 + 2H 2 O + Q

    2) Эндотермические реакции протекают с поглощением энергии:

    СaCO 3 → CaO + CO 2 - Q

    C 12 H 26 → C 6 H 14 + C 6 H 12 - Q

    IV. По агрегатному состоянию реагирующих веществ

    1) Гетерогенные реакции – реакции, в ходе которых реагирующие вещества и продукты реакции находятся в разных агрегатных состояниях:

    Fe(тв) + CuSO 4 (р-р) → Cu(тв) + FeSO 4 (р-р),
    CaC 2 (тв) + 2H 2 O(ж) → Ca(OH) 2 (р-р) + C 2 H 2 (г)

    2) Гомогенные реакции – реакции, в ходе которых реагирующие вещества и продукты реакции находятся в одном агрегатном состоянии:

    H 2 (г) + Cl 2 (г) → 2HCl(г),
    2C 2 H 2 (г) + 5O 2 (г) → 4CO 2 (г) + 2H 2 O(г)

    V. По участию катализатора

    1) Некаталитические реакции, идущие без участия катализатора:

    2Н 2 + О 2 → 2Н 2 О, С 2 Н 4 + 3О 2 → 2СО 2 + 2Н 2 О

    2) Каталитические реакции, идущие с участием катализаторов:

    2H 2 O 2 → 2H 2 O + O 2

    VI. По направлению

    1) Необратимые реакции протекают в данных условиях только в одном направлении:

    С 2 Н 4 + 3О 2 → 2СО 2 + 2Н 2 О

    2) Обратимые реакции в данных условиях протекают одновременно в двух противоположных направлениях: N 2 + 3H 2 ↔2NH 3



    VII. По механизму протекания

    1) Радикальный механизм.

    А: В → А· + ·В

    Происходит гомолитический (равноценный) разрыв связи. При гемолитическом разрыве пара электронов, образующая связь, делится таким образом, что каждая из образующихся частиц получает по одному электрону. При этом образуются радикалы – незаряженные частицы с неспаренными электрономи. Радикалы – очень реакционноспособные частицы, реакции с их участием происходят в газовой фазе с большой скоростью и часто со взрывом.

    Радикальные реакции идут между образующимися в ходе реакции радикалами и молекулами:

    2H 2 O 2 → 2H 2 O + O 2

    CH 4 + Cl 2 → CH 3 Cl +HCl

    Примеры: реакции горения органических и неорганических веществ, синтез воды, аммиака, реакции галогенирования и нитрования алканов, изомеризация и ароматизация алканов, каталитическое окисление алканов, полимеризация алкенов, винилхлорида и др.

    2) Ионный механизм.

    А: В → :А - + В +

    Происходит гетеролитический (неравноценный) разрыв связи, при этом оба электрона связи остают­ся с одной из ранее связанных частиц. Образуются заряженные частиц (катионы и анионы).

    Ионные реакции идут в растворах между уже имеющимися или образующимися в ходе реакции ионами.

    Например, в неорганической химии – это взаимодействие электролитов в растворе, в органической химии – это реакции присоединения к алкенам, окисление и дегидрирование спиртов, замещение спиртовой группы и другие реакции, характеризующие свойства альдегидов и карбоновых кислот.

    VIII. По виду энергии, инициирующей реакцию:

    1) Фотохимические реакции происходят при воздействии квантов света. Например, синтез хлороводорода, взаимодействие метана с хлором, получение озона в природе, процессы фотосинтеза и др.

    2) Радиационные реакции инициируются излучениями больших энергий (рентгеновскими лучами, γ-лучами).

    3) Электрохимические реакции инициирует электрический ток, например, при электролизе.

    4) Термохимические реакции инициируются тепловой энергией. К ним относятся все эндотермические реакции и множество экзотермических, для инициации которых необходима теплота.

    Лекция: Классификация химических реакций в неорганической и органической химии

    Виды химических реакций в неорганической химии


    А) Классификация по количеству начальных веществ:

    Разложение – вследствие данной реакции, из одного имеющегося сложного вещества, образуются два или несколько простых, а так же сложных веществ.

    Пример: 2Н 2 O 2 → 2Н 2 O + O 2

    Соединение – это такая реакция, при которой из двух и более простых, а также сложных веществ, образуется одно, но более сложное.

    Пример: 4Al+3O 2 → 2Al 2 O 3

    Замещение – это определенная химическая реакция, которая проходит между некоторыми простыми, а так же сложными веществами. Атомы простого вещества, в данной реакции, замещаются на атомы одного из элементов, находящегося в сложном веществе.

    Пример: 2КI + Cl2 → 2КCl + I 2

    Обмен – это такая реакция, при которой два сложных по строению вещества обмениваются своими частями.

    Пример: HCl + KNO 2 → KCl + HNO 2

    Б) Классификация по тепловому эффекту:

    Экзотермические реакции – это определенные химические реакции, при которых происходит выделение тепла.
    Примеры:

    S +O 2 → SO 2 + Q

    2C 2 H 6 + 7O 2 → 4CO 2 +6H 2 O + Q


    Эндотермические реакции – это определенные химические реакции, при которых происходит поглощение тепла. Как правило, это реакции разложения.

    Примеры:

    CaCO 3 → CaO + CO 2 – Q
    2KClO 3 → 2KCl + 3O 2 – Q

    Теплота, которая выделяется или поглощается в результате химической реакции, называется тепловым эффектом.


    Химические уравнения, в которых указан тепловой эффект реакции, называют термохимическими .


    В) Классификация по обратимости:

    Обратимые реакции – это реакции, которые протекают при одинаковых условиях во взаимопротивоположных направлениях.

    Пример: 3H 2 + N 2 ⇌ 2NH 3

    Необратимые реакции – это реакции, которые протекают только в одном направлении, а так же завершающиеся полным расходом всех исходных веществ. При этих реакциях выделяе тся газ, осадок, вода.
    Пример: 2KClO 3 → 2KCl + 3O 2

    Г) Классификация по изменению степени окисления:

    Окислительно - восстановительные реакции – в процессе данных реакций происходит изменение степени окисления.

    Пример: Сu + 4HNO 3 → Cu(NO 3) 2 + 2NO 2 + 2H 2 O.

    Не окислительно - восстановительные – реакции без изменения степени окисления.

    Пример: HNO 3 + KOH → KNO 3 + H 2 O.

    Д) Классификация по фазе:

    Гомогенные реакции реакции, протекающие в одной фазе, когда исходные вещества и продукты реакции имеют одно агрегатное состояние.

    Пример: Н 2 (газ) + Cl 2 (газ) → 2HCL

    Гетерогенные реакции – реакции, протекающие на поверхности раздела фаз, при которых продукты реакции и исходные вещества имеют разное агрегатное состояние.
    Пример: CuO+ H 2 → Cu+H 2 O

    Классификация по использованию катализатора:

    Катализатор – вещество, которое ускоряет реакцию. Каталитическая реакция протекает в присутствии катализатора, некаталитическая – без катализатора.
    Пример: 2H 2 0 2 MnO 2 2H 2 O + O 2 катализатор MnO 2

    Взаимодействие щелочи с кислотой протекает без катализатора.
    Пример: КOH + HCl КCl + H 2 O

    Ингибиторы – вещества, замедляющие реакцию.
    Катализаторы и ингибиторы сами в ходе реакции не расходуются.

    Виды химических реакций в органической химии


    Замещение – это реакция, в процессе которой происходит замена одного атома/группы атомов, в исходной молекуле, на иные атомы/группы атомов.
    Пример: СН 4 + Сl 2 → СН 3 Сl + НСl

    Присоединение – это реакции, при которых несколько молекул вещества соединяются в одну. К реакциям присоединения относятся:

    • Гидрирование – реакция, в процессе которой происходит присоединение водорода по кратной связи.

    Пример: СН 3 -СН = СН 2 (пропен) + Н 2 → СН 3 -СН 2 -СН 3 (пропан)

      Гидрогалогенирование – реакция, присоединяющая галогенводород.

    Пример: СН 2 = СН 2 (этен) + НСl → СН 3 -СН 2 -Сl (хлорэтан)

    Алкины реагируют с галогеноводородами (хлороводородом, бромоводородом) так же, как и алкены. Присоединение в химической реакции проходит в 2 стадии, и определяется правилом Марковникова:


    При присоединении протонных кислот и воды к несимметричным алкенам и алкинам атом водорода присоединяется к наиболее гидрогенизированному атому углерода.

    Механизм данной химической реакции. Образующийся в 1 - ой, быстрой стадии, p- комплекс во 2 - ой медленной стадии постепенно превращается в s-комплекс - карбокатион. В 3 - ей стадии происходит стабилизация карбокатиона – то есть взаимодействие с анионом брома:

    И1, И2 - карбокатионы. П1, П2 - бромиды.


    Галогенирование – реакция, при которой присоединяется галоген. Галогенированием так же, называют все процессы, в результате которых в органические соединения вводятся атомы галогена. Данное понятие употребляется в "широком смысле". В соответствии с данным понятием, различают следующие химические реакции на основе галогенирования: фторирование, хлорирование, бромирование, йодирование.

    Галогенсодержащие органические производные считаются важнейшими соединениями, которые применяются как в органическом синтезе, так и в качестве целевых продуктов. Галогенпроизводные углеводородов, считаются исходными продуктами в большом количестве реакций нуклеофильного замещения. Что касается практического использования соединений, содержащих галоген, то они применяются в виде растворителей, например хлорсодержащие соединения, холодильных агентов - хлорфторпроизводные, фреоны, пестицидов, фармацевтических препаратов, пластификаторов, мономеров для получения пластмасс.


    Гидратация – реакции присоединения молекулы воды по кратной связи.

    Полимеризация – это особый вид реакции, при которой молекулы вещества, имеющие относительную невеликую молекулярную массу, присоединяются друг к другу, впоследствии образовывая молекулы вещества с высокой молекулярной массой.



    Справочник содержит 1100 неорганических веществ, для которых приведены уравнения важнейших реакций. Выбор веществ обосновывался их теоретической и лабораторно-промышленной важностью.

    Справочник организован по алфавитному принципу химических формул и четко разработанной структуре, снабжен предметным указателем, позволяющим легко найти нужное вещество. Не имеет аналогов в отечественной и зарубежной химической литературе.

    Для студентов химических и химико-технологических ВУЗов. Может быть использован преподавателями ВУЗов, аспирантами, научными и инженерно-техническими работниками химической промышленности, а также учителями и учащимися старших классов средней школы.

    Al - алюминий.

    Белый, легкий, пластичный металл. Пассивируется в воде, концентрированной азотной кислоте и растворе дихромата калия из-за образования устойчивой оксидной пленки; амальгамированный металл реагирует с водой. Реакционноспособный, сильный восстановитель. Проявляет амфотерные свойства; реагирует с разбавленными кислотами и щелочами.

    AIN - нитрид алюминия.

    Белый, очень твердый, огнеупорный, термически устойчивый. Не реагирует с жидкой водой, полностью гидролизуется водяным паром. Нерастворим в этаноле. Реагирует с кислотами и щелочами, но кислотостоек в компактной форме.

    ZnS - сульфид цинка(II).

    Белый, аморфный (осажденный из раствора) или кристаллический - кубическая а-модификация и гексагональная B-модификация. Чувствителен к УФ-облучению. В аморфном виде более реакционноспособный. Пептизируется (переходит в коллоидный раствор) при длительной обработке сероводородной водой. Не растворяется в воде, не реагирует со щелочами, гидратом аммиака. Реагирует с сильными кислотами, во влажном состоянии медленно окисляется 02 воздуха.

    Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
    Скачать книгу Реакции неорганических веществ, справочник, Молочко В.А., Андреева Л.Л., Лидин Р.А., 2007 - fileskachat.com, быстрое и бесплатное скачивание.

    • Константы неорганических веществ, Справочник, Лидин Р.А., Андреева Л.Л., Молочко В.А., 2008
    • Химия, Для школьников старших классов и поступающих в ВУЗы, Теоретические основы, Вопросы, Задачи, Тесты, Учебное пособие, Лидин Р.А., Молочко В.А., Андреева Л.Л., 2001